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A Probabilistic Approach to Worst Case Scenarios

Historical simulation is a natural setting for scenario analy-
sis, but it must pay attention to current market conditions

Value at Risk (VaR) is increasingly popular as a management and regulatory tool.
To further its acceptance it is necessary to assess its reliability under conditions
likely to be encountered in financial markets. A logical venue to investigate this

issue is through the use of historical simulation.

Historical simulation relies on a uniform distribution to select innovations from
the past. These innovations are applied to current asset prices to simulate their
future evolution. Once a sufficient number of different paths has been explored it
is possible to determine a portfolio VaR without making arbitrary assumptions
on the distribution of portfolio returns. This is especially useful in the presence

of abnormally large portfolio returns.

From the early days of modern finance large returns are known to cluster in
time. The resulting fluctuations in daily volatility make the confidence levels of
VaR computations that ignore clustering unreliable. This is the case with VaR
measurements based on the variance-covariance matrix and Monte-Carlo meth-
ods, that typically ignore current market conditions to produce flat volatility fore-
casts for future days. Moreover the use of the covariance matrix of security re-
turns or the choice of an arbitrary distribution in the Monte-Carlo method usu-

ally destroys valuable information about the distribution of portfolio returns.

To make our historical simulation consistent with the clustering of large returns

we model the volatility of our portfolio as a GARCI process. Past daily portfolio
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returns are divided by the GARCH volatility estimated for the same date to ob-
tain standardised residuals. A simulated portfolio return for tomorrow is ob-
tained multiplying a randomly selected standardised residual by the GARCH
forecast of tomorrow volatility. This simulated return is used to update the
GARCH forecast for the following day, that is then multiplied by a newly se-
lected standardised residual to simulate the return for the second day. Our re-
cursive procedure is repeated until the VaR horizon (i.e.,10 days) is reached,
generating a sample path of portfolio volatilities and returns. We repeat our pro-
cedure to obtain a batch of sample paths of portfolio returns. A confidence band
tfor the corresponding portfolio values is built by taking the Kernel (empirical)
frequency distribution of values at each time. The lower 1% area identifies the

worst case over the next ten days.

To illustrate our procedure we constructed a hypothetical portfolio, diversified
across all thirteen national equity markets of our data sample. To form our port-
folio each equity market is weighted proportionally to its capitalisation in the
world index as on December 1995. The portfolio weights are reported in the table

below:

Table 1 : Portfolio weights

country our portfolio world index (dec 95)
Denmark 0.004854 0.004528
France 0.038444 0.035857
Germany 0.041905 0.039086
Hong Kong 0.018918 0.0176450
Italy 0.013626 0.012709
Japan 0.250371 0.233527
Netherlands 0.024552 0.022900
Singapore 0.007147 0.006667
Spain 0.010993 0.010254
Sweden 0.012406 0.011571
Switzerland 0.036343 0.033898
UK 0.103207 0.096264
us 0.437233 0.407818
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Hence these weights are held constant for the entire 10 year period and multi-
plied by the thirteen local index returns. Since market risk needs to quantify
eventual portfolio losses in one currency all local portfolio returns are measured
in US dollars. The descriptive statistics together with the Jarque-Bera' normality
test are reported on table 2. Figure 1 displays the empirical distribution of port-

folio's returns.

Table 2 : Descriptive statistics of the equally weighted portfolio
mean (p.a.) | std.dev(p.a) | skewness | kurtosis | normality | p value

10.92% 12.34% -2.828 62.362 | 3474.39 0.000

The last column is the probability that our portfolio returns are generated from a

normal distribution.

The rejection of normality in table 1 and the pattern of clustering visible in figure
1 led us to model our portfolio returns, r;, as a GARCIH process with asymme-

tries, with daily volatility h; given by eq.1:
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! The test for normality is the Jarque-Bera test,
JB = ((skewness2 / 6) + (Kurtosis - 3)2 / 24) o x?

2df
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Fig 1 : World Capitalisation weigthed Portfolio Returns
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Therefore our portfolio volatility is modelled to depend on the most recently ob-
served portfolio return. The combination of GARCH volatility and portfolio his-
torical returns offers us a fast and accurate measure of the past, current (and fu-
ture) volatility of the current portfolio. No estimation of the correlation matrix of
security returns is required. Furthermore our VaR method contains fewer "bad
surprises”, since GARCIH models allow for fat tails on the unconditional distribu-
tion of the data. The effects of our choice become apparent if the returns in fig-
ure 1 are compared with figure 2, where the returns have been scaled by their
daily volatility, as in equation 2:

r
z =— (2)

Lo

Clustering of returns in time is reduced by volatility scaling and the distribution
of returns now appears to be more uniform. However the large number of re-

turns still exceeding 3 standard deviations suggests that our scaling does not
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make returns normal. Our annualised portfolio volatility, in figure 3, varied from

over 10 years.
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Fig 2 : Porfolio Stress Analysis

(Standardised Residuals)

10

-15

S6/2T/0C

§6/80/20

G6/€0/ST

v6/0T/92

6/90/80

V6/T0/6T

€6/60/T0

€6/Y0/vT

26/TT/SC

26/L0/80

26/20/6T

16/0T/20

16/S0/ST

06/21/92

06/80/80

06/€0/T2

68/TT/T0

68/90/vT

68/T0/SC

88/60/L0

88/70/02

18/2T/20

18/L0/ST

18/20/S¢

98/0T/80

98/50/1¢

98/T0/T0

Fig 3 : Annualized volatility of the portfolio
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The scaled returns are the foundation of our simulation. To simulate portfolio re-
turns over next 10 days we select randomly 10 returns from figure 2. We then
construct iteratively the daily portfolio volatility that these returns imply accord-
ing to equation 1. We use this volatility to rescale our returns. The resulting re-
turns reflect therefore current market conditions rather than market conditions

associated with returns in figure 1.

To obtain the distribution of our portfolio returns we replicated the above proce-
dure 10,000 times. The resulting -normalised- distribution is shown in figure 4.
The normal distribution is shown in dots in the same figure for ease of compari-
son.

Fig 4 : Normalized Estimated DistributionfoReturns in 10 dgs
versus the normal dengit(10,000 Simulations)
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Not surprisingly, simulated returns on our well-diversified portfolio are almost
normal, except for their steeper peaking around 0 and some clustering in the
tails. The general shape of the distribution supports the validity of the usual
measure of VaR for our portfolio. However a closer examination of our simula-
tion results shows how even our well-diversified portfolio may depart from nor-
mality under worst case scenarios. There are in fact several occurrences of very
large negative returns, reaching a maximum loss of 9.52 . Our empirical distri-

bution implies losses of 3.38 and 2.24 at confidence levels of 1 and 5 re-

spectively.
Fig 5 : Estimated Distribution of Portfolio VaR in 10 days
(10,000 Simulations)
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The reason for this departure is the changing portfolio volatility and thus portfo-
lio VaR, shown in figure 5. Portfolio VaR over next 10 days depends on the

random returns selected in each simulation run. Its pattern is skewed to the
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right, showing how large returns tend to cluster in time. These clusters provide
realistic worst case scenarios consistent with historical experience. Of course our
methodology may produce more extreme departures from normality for less di-

versified portfolios.

In conclusion, our simulation methodology allows for a fast evaluation of VaR
and worst case scenarios for large portfolios. It takes into account current market
conditions and does not rely on the knowledge of the correlation matrix of secu-

rity returns.

Our computations were performed using the RiskClock software.
A full description of it is available from the authors.



