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Abstract

A safety-first investor maximizes expected return subject to a downside risk constraint.
wArzac and Bawa Arzac, E.R., Bawa, V.S., 1977. Portfolio choice and equilibrium in capital

xmarkets with safety-first investors. Journal of Financial Economics 4, 277–288. use the
Value at Risk as the downside risk measure. The paper by Gourieroux, Laurent and Scaillet
estimates the optimal safety-first portfolio by a kernel-based method, we exploit the fact
that returns are fat-tailed, and propose a semi-parametric method for modeling tail events.
We also analyze a portfolio containing the two stocks used by Gourieroux et al. and discuss
the merits of the safety-first approach. q 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The portfolio choice of a safety-first investor is to maximize expected return
Ž . Ž .subject to a downside risk constraint. Roy’s 1952 and Arzac and Bawa’s 1977

Ž .safety-first investor uses Value at Risk VaR as the measure for downside risk.
Empirical applications of the safety-first principle have tended to use the Cheby-
shev bound. But this estimator can be rather imprecise as an estimate of the

Ž . Ždownside risk. The preceding paper by Gourieroux et al. 2000 henceforth,
.G–L–S makes a number of contributions in addition to deriving analytical
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expressions for the first and second derivatives of the VaR. In their empirical
application, they introduce a kernel-based approach for estimating VaR, as well as
a discussion of how to check the convexity of the estimated VaR-efficient
portfolio set. In this paper we exploit the fact that asset returns are fat-tailed
in order to estimate the downside risk and to calculate optimal safety-first port-
folios.

We first show that the portfolio choice problem facing the G–L–S investor is
the same as the portfolio choice problem faced by a safety-first investor as

Ž . Ž .introduced by Roy 1952 and developed by Arzac and Bawa 1977 . Then, we
develop an alternative procedure for estimating VaR and constructing VaR-effi-
cient portfolios using methods from the statistical theory of extremes. While
G–L–S estimate their VaR-efficient portfolios using a kernel estimator to replace
the unknown distribution of the portfolio by a smooth approximation, a nonpara-
metric approach that attempts to estimate the entire distribution, we use a
semiparametric approach that utilizes characteristics of the tails of the distribution.
We are able to characterize, for an unknown distribution of returns, the behavior in
the tails of the distribution, both in sample and for extreme values beyond those
realized in our sample. Subsequently, we apply the method to several data sets,
including the data used by G–L–S, and conclude by discussing the merits of the
safety-first criterion.

We have several motives for this research program. First, we believe portfolio
selection with limited downside risk to be a practical problem. Even if agents are
endowed with standard concave utility functions such that to a first order
approximation they would be mean-variance optimizers, practical circumstances
often impose constraints that elicit asymmetric treatment of upside potential
and downside risk. Regulatory concerns require commercial banks to report a
single number, the so-called VaR, which gives the expected loss on their
trading portfolio if the lowest 1% quantile return would materialize. Capital
adequacy is judged on the basis of the size of this expected loss. Likewise, pen-
sion funds are often required by law to structure their investment portfolio such
that the risk of underfunding is kept very low, e.g. equity investment may be
capped.

ŽSecond, there is a wealth of experimental evidence for loss aversion see,
.e.g. Kahneman et al., 1990 . Other evidence is provided through consumption

Ž .behavior. As Deaton 1991, 1992 shows, consumption responds asymmetrically
to good and bad states. Similarly, within the mean-variance setup there is a
range of returns such that consumption is too low for survival. Over this range,
modeling risk by the expectation of squared returns may not be useful. Better
may be to collapse all returns below the survival threshold as being equally
risky.

Modeling limited downside risk has often been identified with the safety-first
Ž .criterion developed by Roy 1952 , although we have already commented that the

G–L–S portfolio choice problem for VaR-efficient portfolios is essentially the
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same problem as faced by Arzac and Bawa’s safety-first investor.1 In the past,
safety-first was regarded as impractical for two reasons. The safety-first criterion
was originally stated in terms of securing a minimal return level with a high
probability. The criterion was made operational through the use of the Chebyshev
bound on the probability of failure. But for minimal return levels below the
riskless rate, the portfolio problem under the safety-first criterion is degenerate
Ž . Ž .see, e.g. Levy and Sarnat, 1972 . Arzac and Bawa 1977 also noted that the
original criterion fails to order risky assets, which are unambiguously ordered by
the principle of absolute preference. By considering a lexicographic form of the
safety-first principle, to the extent that the investor is only concerned about safety
when the failure probability is above a critical level and otherwise maximizes
expected return, and by allowing for borrowing and lending, Arzac and Bawa were
able to resolve the theoretical shortcomings of the original criterion.

The other concern with the safety-first choice criterion has been the calculation
of the failure probability. In practice it is not precisely known how returns are
distributed. The literature, therefore, has proceeded by using the Chebyshev
bound. The problem is that while this bound is robust, it is also highly inaccurate.

The question, then, is whether one can improve upon the estimate of the failure
probability. If possible, this would also provide a genuine motive for using the
safety-first principle. In particular, a method is called for which takes into account
the fact that asset returns are heavy tailed, generating failure probabilities that are
considerably different from normal probabilities. G–L–S provides one technique
for doing so, a technique which involves nonparametric estimation of the entire
distribution. We provide an alternative, semi-parametric method for modeling the
tail of the distribution. For problems involving downside risks that are not in the
tails of the distribution, the G–L–S technique should be superior, since our
technique has nothing to say about the central part of the distribution. But for
problems involving downside risks that are far in the tails of the distribution, our
technique should be superior, since it is built upon knowledge of the tail behavior
that must be followed by any unbounded fat-tailed distribution.2

The setup of this paper is as follows. In Section 2, we discuss the two inputs for
portfolio selection with limited downside risk: safety-first theory as developed by

Ž . Ž .Roy 1952 and Arzac and Bawa 1977 , and statistical extreme value theory. In
Section 3, we use the latter theory to estimate tail indices for stocks and bonds. In

1 Roy developed the safety-first criterion at the same time as Markowitz introduced mean-variance
Ž . Ž .analysis. See Bernstein 1992 for an interesting account of this coincidence. Jorian 1997 gives a

good account of the development of VaR.
2 There is one single feature of asset return data which is almost undisputed: Returns display high

kurtosis. That is, in comparison to the bell-shaped normal density, there are more returns in the center
and more returns in the tails of the distribution. This feature is often referred to as the heavy-tail

Žproperty. In fact, the assumption of Frechet tails is commonplace for financial data see Jansen and de
.Vries, 1991 or Longin, 1996 .
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Section 3, these estimates for tail fatness are used to construct portfolios with
limited downside risk. In Section 4 we show how the analysis can be extended to
longer horizons. Section 5 contains our conclusion.

2. Safety-first theory and extreme value theory

Ž .This presentation closely follows Arzac and Bawa 1977 but adopts the
G–L–S notation for comparison to their paper. Investors’ preference ordering is

Ž . Ž .represented as p , m , where ps1 if the probability P of a large negative
return is less than a specified critical value d , P-d , and otherwise ps1yP.

Ž .The critical loss value d will be called the risk probability RP . For a given p ,
the investor then maximizes the expected return, m.

We can state the portfolio problem as:
max p ,m subject to a

XP qa sW 1Ž . Ž .t 0 t
a,a0

where
ps1 if PsPr aXP qa rFs Fd 2Ž . Ž .tq1 0

ps1yP otherwise
and

msEaXP qa r 3Ž .tq1 0

where P denotes the vector or initial market values of assets at time t, P thet tq1

vector of market value of assets at time tq1, W the initial wealth of the investor,t
Ž . Ž .a the amount of lending if a )0 or borrowing if a -0 , r the risk-free gross0 0 0

rate of return, and aX the vector giving the amount of risky assets in the portfolio.
Note that a safety-first investor must specify both the disaster level of wealth, s,
and the maximal acceptable probability of this disaster, d , which we refer to as the
risk level.

The above problem can be restated in terms of gross returns R, RsaXP raXP ,tq1 t

by rewriting the safety-first condition as
aXP sya rtq1 0XPr a P Fsya r sPr -Ž . Xtq1 0 ž /a P W yat t 0

syW rt
sPr RFrq Fd . 4Ž .ž /W yat 0

Ž .It is useful in this case to define a value q R that such that there is a d% chanced

of returns less than or equal to this value.

Pr RFq R sd . 5Ž . Ž .Ž .d

The negative of this quantile q will be referred to as the VaR. The safety-firstd

criterion is violated whenever
syW rt

q R -rq 6Ž . Ž .d W yat 0
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Note that a safety-first investor will exhibit risk aversion if the critical wealth level
s is smaller than his secure final wealth Wr, an assumption that seems reasonable
in application. For example, s could be stated as a fraction of wealth, say 0.8W or
0.9W, in which case Wr most certainly exceeds s. In this case, a safety-first
investor will decline a fair risk that violates the safety-first criterion in favor of
pure lending at the risk-free rate r. But a risk averse safety-first investor will
always buy some part of a divisible favorable risk, and the amount bought will be

Ž . Ž .the maximum satisfying W ya q R qa rss, ort 0 d 0

syW rt
W ya s . 7Ž .t 0 q R yrŽ .d

Thus, as long as some favorable assets are available, the portfolio problem can be
rewritten as the maximization of the excess returns:

maxmsW rq W ya Ryr , RsE R , 8Ž . Ž . Ž . Ž .t t 0
a,a0

where the maximization is carried out among those portfolios that satisfy the
safety-first criterion; that is, among those portfolios that have a probability of

Ž . Ž .1yd or greater of maintaining a value in excess of s. By combining 7 and 8 ,
this problem reduces to

maxmsWry syWr Ryr r ryq R 9Ž . Ž . Ž . Ž .Ž .d
a,a0

This implies that the risk averse safety-first investor can first maximize the ratio of
the risk premium to the return opportunity loss that he is willing to incur with
probability d , i.e.

max Ryr r ryq R 10Ž . Ž . Ž .Ž .d
a

and then the investor can pick the scale of the risky part of his portfolio.
In the paper by G–L–S, they set up this same problem as maximizing an

expected return subject to a VaR constraint. Thus, Arzac and Bawa’s problem and
G–L–S’s problem are isomorphic. Other than some notational matters, the two
approaches are the same. Thus, the portfolio selection problem in the G–L–S
paper can be seen as an application of their results applying a nonparametric
estimation procedure to the Arzac and Bawa portfolio selection problem. More
generally, the similarity between the Arzac and Bawa problem and the G–L–S

Ž .problem points out the similarity of VaR problems and Roy’s 1952 safety-first
criterion.

A natural question to ask is when and how the portfolio selection under
safety-first will differ from such traditional methods as mean variance. In safety-
first, the parameter d and the actual portfolio distribution determines the VaR,
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Ž .q R . This measure of risk may be preferred to the variance in some cases,d

because it is only based on large negative returns and it may apply in situations
when the variance is not sufficient to measure the probability of a large negative
shock.

There are some cases in which the safety-first problem can be restated as an
Ž . Ž .equivalent mean-variance problem. Arzac and Bawa 1977 indicated that if q Rd

Ž . Ž .can be written as Ryg d h g , Q , where Q are the parameters of the distribu-
tion, then safety-first reverts to mean-variance. This happens, for example, when
the distribution of returns is normal, Student’s t, or stable with common character-

Ž . Ž .istic exponent in the interval 1,2 . It also happens when q R is derived usingd

Chebyshev’s inequality.
Further, if the distribution of the returns is known, then the two-part optimiza-

Žtion can be relatively straightforward if the convolution that is needed for
Ž . .calculating q R is not too complicated . But in most practical situations thed

Ž .return distribution is not known and q R has to be estimated.d

Roy himself initially proposed using the Chebyshev inequality, and the subse-
quent literature has largely followed up on this suggestion.3 But there are strong
reasons to doubt that the Chebyshev inequality gives a sufficiently tight bound in

Ž .practice see de Haan et al., 1994 . For one thing, it is well known that asset
returns are not normal distributed but instead have fat tails. Below, we are able to
exploit this fact to obtain a sharper bound than the Chebyshev bound.

How do we exploit the fact that asset distributions are heavy tailed? First, we
note that in order to operationalize the safety-first measure of risk, we need to
calculate tail probabilities. Hence, a semi-parametric approach that only models
the tail of the distribution parametrically suffices. Second, such a semi-parametric
approach may have several advantages. Vis-a-vis a fully parametric approach, tail
estimates are less likely to be biased than parametric estimates which also need to
reflect the center characteristics of the distribution.4 In comparison with the
nonparametric approach, the semi-parametric approach can easily deal with out-
of-sample VaR levels q. Third, the strength of the semi-parametric approach
resides in the fact that all heavy-tailed distributions exhibit, to a first order
approximation, identical behavior far out in the tails. This feature will be made
precise in a moment. Fourth, the tail self-similarity permits a simple extension
from the single period problem to the multiperiod portfolio investment problem.
While the rule is different, it is as simple as the square root of time rule for the

Ž .normal distribution or for the Chebyshev, for that matter . That is discussed in
Section 4.

3 A textbook discussion of safety-first and the use of the Chebyshev bound is provided in Elton and
Ž .Gruber 1995 .

4 Ž .See Mittnik et al. 1998 for further discussions of the choice between fully parametric and
semi-parametric estimates for the tail index.
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The unifying feature of heavy-tailed distributions is the regular variation
5 Ž .property. A distribution F x is said to be regularly varying at negative infinity if

F ytxŽ .
yalim sx 11Ž .

F ytt™` Ž .

where x)0 and a)0. The parameter a is called the tail index for obvious
reasons. A similar condition applies to the positive tail. By l’Hopital’s rule, it is
immediate that regular variation implies that the tails of the density decline by a
power. This is different from such distributions as the normal, which exhibit
exponential decline, and exponential decline is eventually always faster than any
power decline. From this one can understand why all the moments can be bounded
for the normal distribution, while distributions which are regularly varying only
have bounded moments less than a . Hence, the label ‘heavy tailed.’ It can be

Ž .checked that, e.g. Student’s t and the non-normal stable Paretian or sum-stable
Ž .distributions satisfy 11 , as well as the unconditional stationary distribution of

certain ARCH processes with conditionally normal innovations.6

ŽAs we indicated, the regular variation property can be exploited to model d ,
. Ž .q . Regular variation 11 implies that, asymptotically,d

F yx saxya 12Ž . Ž .

as x™`, for some a)0. The a and a parameters are specific to the distribution
at hand, but can be estimated.

Ž .Given 12 , we turn to estimation of the VaR quantile, q . Let n be the sampled

size. Consider two failure probabilities p and t, such that one is in-sample and
close to 1rn, say p)1rn, and one is out-of-sample, say t-1rn. From

Ž .expansion 12 , we have

ya ya
psa yq and tsa yq 13Ž . Ž . Ž .p t

for q -q -0 and large n. Division of p by t and rearrangement givest p

1raq fq prt . 14Ž . Ž .t p

� 4Let X be the m-th ascending order statistic from the sample X , . . . , X ,Žm. 1 n

i.e. X FX F . . . FX F . . . FX . Since the empirical distribution functionŽ1. Ž2. Žm. Žn.

5 Ž .More detailed account of the regular variation property can be found in Resnick 1987 and Geluk
Ž .and de Haan 1987 .

6 For the Student’s t distribution, a equals the degrees of freedom; for the stable distributions a

equals the characteristic exponent.
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Ž .is a mean squared error consistent estimator for F q , we will replace p by mrn
and use X for q . Conditional on having an estimate for a , our estimator forŽm. p

the unit VaRyq ist

1râm
q sX 15Ž .ˆt Žm. ž /nt

Ž .To estimate the tail index a , we use the well-known Hill 1975 moment
estimator. This estimator can be interpreted as the maximum likelihood estimator

Ž .of a in 12 , conditioned on a low threshold value X such that the RHS ofŽmq1.
Ž . Ž . 712 is a good approximation to F yx .

The Hill estimator reads:

m1
1ras log X rX , 16Ž .ˆ Ž .Ý Žnq1yi. Žnym.m is1

Ž .where the X are again the lowest negative order statistics. Goldie and SmithŽ i.
Ž . Ž . 0.51987 provide a relatively simple proof of the fact that 1ray1ra m isˆ

Ž 2 .asymptotically normal N 0, 1ra if m increases suitably rapidly with n. de Haan
Ž .et al. 1994 subsequently show that

'm
2q yq ;N 0,1ra 17Ž .Ž . Ž .ˆt tX log mrnpŽ .mq 1

asymptotically.

3. Data analysis — tail estimates for stocks and bonds

Here, we consider the problem of choosing between investing in a mutual fund
of bonds or a mutual fund of stocks. We use 67 years of monthly data on a US
bond index and a US stock index, 1926.01–1992.12, which we obtained from the
CRSP database. We also present, separately, an analysis of the two stocks
considered by G–L–S, Thomson-CSF and L’Oreal. On these, we have 546 daily
observations.

In Table 1, we present summary statistics. The top portion presents statistics for
our monthly index of US stock and bond returns. We include both corporate bonds
and government bonds, as well as stocks. Note that the returns on corporate and
government bonds are highly positively correlated. Also, the mean return on
stocks is about 0.008 per month, almost twice as high as the mean return on

7 Ž .See Berliant et al. 1996 .
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Table 1
Summary statistics

Returns on monthly US corporate bonds, government bonds, and stocks

Corporate bonds Government bonds Stocks

Mean 0.004445 0.003938 0.007943
Standard deviation 0.019782 0.021674 0.055702
Range q0.133, y0.093 q0.142, y0.088 q0.320, y0.340
Skewness 0.746 0.746 y0.488
Kurtosis 10.027 8.496 9.888
J–B normality test 1728.6 1086.6 1621.4
No. of observations 804 804 804
Correlation of returns
Corporate bonds, government bonds: 0.838
Corporate bonds, stocks: 0.231
Government bonds, stocks: 0.183

Returns on daily French stocks

Ž . Ž .Stock 1 Thomson-CSF Stock 2 L’Oreal

Mean 0.0000495 0.0005861
Standard deviation 0.01261 0.01129
Range q0.0399, y0.0452 q0.0401, y0.0434
Skewness y0.239 0.061
Kurtosis 4.114 4.311
J–B normality test 33.46 39.44
No. of observations 546 546
Correlation of returns
Stock 1, stock 2: 0.385

bonds. Corporate bonds have a mean return of 0.0044 per month, which exceeds
the 0.0039 mean return on US government bonds and reflects the risk premium
paid on corporate bonds. The standard deviation of stock returns is more than
twice that on either of the bond series, and the range of sample values of stock
returns is much wider than the range of values for the two bond returns. Table 1
also reports kurtosis calculations, which indicate that these three series have fat
tails, and the Bera–Jarque test statistics, which decisively reject the normality of
these returns. Our conclusion from the summary statistics is that there is little
reason to think that either stock or bond returns are normally distributed. This is
important to our application, since we will assume that the limiting shape of the
tail of the return distribution is fat-tailed.

The bottom half of Table 1 presents summary statistics on the two French
stocks. The mean returns are widely different, 0.00005 and 0.0006 per day,
respectively, which translates into something like 1.25% and 16.2% annually,
respectively. As we will see, these widely differing mean returns over the period
of the G–L–S sample makes an application of our safety-first procedure somewhat
problematic, and it would make an application to mean variance equally problem-
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atic. The issue is that, with such a short sample and a resulting wide variation in
Žthe sample-specific mean returns over the past 10-year period, the mean returns

.are much closer , the portfolio choice problem is swamped by the difference in
means, especially for two stocks that show such similar risk characteristics
whether measured by standard deviation or, as we shall see, by risk quantiles.
Indeed, these two stocks show a great similarity in standard deviations, ranges,
and excess kurtosis. For both stocks, the Bera–Jarque test statistic would lead us
to reject normality.

In Table 2, the top portion of the table reports estimates of the tail index for
both the upper and the lower tails of the distribution of our monthly stock and
bond returns. For stocks, the point estimate for the lower tail index is 2.60, while
the point estimate for the upper tail index is estimated to be 2.66. These results are

Ž . Ž .comparable to those of Jansen and de Vries 1991 , Loretan and Phillips 1994
Ž .and Longin 1996 . We also report the two standard error confidence bands

beneath the point estimates, and these can be quite wide. For the lower tail this
confidence band stretches from about 1.2 to 4.0, while for the upper tail it
stretches from about 2.1 to 3.3. Thus, for the lower tail the confidence band
includes a values for the tail index for which the variance is not defined. Finally,
in the column labeled m, we report the number of order statistics chosen by Hall’s
Ž . 81990 bootstrap method for estimating the tail index. Choosing the ‘correct’
value for m is important for the properties of the estimate of the tail index, yet
choosing m appropriately has proven quite difficult and depends on unknown
parameters of the underlying distribution. Hall’s bootstrap is one attempt at
dealing with this issue, but problems remain, and his bootstrap itself requires some
assumption about unknown parameters of the underlying distribution. But we use
his bootstrap procedure here, and for the lower tail of stock returns it indicates
ms13, while for the upper tail index it indicates ms79.

If we look at our three return series over the common sample period 1926–1992,
we see that while the point estimates for a in the upper and lower tails of the
stock return series are very close, this is not as true for the bond series. For US
government bonds, the point estimates of the tail indices appear to differ substan-
tially, with the tail index in the lower tail estimated as 5.39 and the upper tail
index estimated as 2.98. On the basis of a x 2 test for equality, however, not even
in this case could we reject equality of the upper and lower tail indices.9 For
corporate bonds, the lower tail estimate is 2.93 and the upper tail value is 3.53. In
these cases the two standard error confidence bands are quite wide, however, and
include the point estimates from the other tail.

8 Ž .Hall 1990 describes a bootstrap procedure for calculating the number of order statistics to use in
getting an estimate for the tail index. His procedure requires an initial starting estimate for m, which
we take as 6n. Unfortunately, Hall’s procedure is not a panacea.

9 Ž .This test is described and used in Jansen and de Vries 1991 .
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Table 2
Estimates of tail indices and exceedence values

Ž .m X a "2 S.E. X : Exceedencesny m p

Ž . Ž .ps1rn ps1r 1.5n ps1r 2n

( )Monthly stock and bond returns, 1926.01– 1992.12 ns804
Ž . Ž . Ž . Ž .Stocks 13 y0.13150 2.601 "1.414 y0.352 y0.230, y0.760 y0.412 y0.254, y1.086 y0.460 y0.274, y1.442

1926–1992
lower tail

Ž . Ž . Ž . Ž .Stocks 79 0.06009 2.660 "0.587 0.311 0.228, 0.487 0.362 0.259, 0.599 0.403 0.284, 0.694
1926–1992
upper tail

Ž . Ž . Ž . Ž .US bonds 9 y0.05055 5.390 "3.521 y0.076 y0.060, y0.104 y0.082 y0.062, y0.120 y0.086 y0.064, y0.133
1926–1992
lower tail

Ž . Ž . Ž . Ž .US bonds 17 0.06042 2.983 "1.763 0.135 0.092, 0.257 0.155 0.099, 0.348 0.170 0.106, 0.439
1926–1992
upper tail

Ž . Ž . Ž . Ž .Corporate 16 y0.03843 2.932 "1.437 y0.099 y0.068, y0.184 y0.114 y0.074, y0.241 y0.125 y0.079, y0.296
bonds
1926–1992
lower tail

Ž . Ž . Ž . Ž .Corporate 16 0.05591 3.537 "1.733 0.122 0.088, 0.199 0.137 0.095, 0.245 0.149 0.106, 0.287
bonds
1926–1992
upper tail

( )Daily data on French stocks ns 546
Ž . Ž . Ž . Ž .Stock 1 21 0.0275 4.37 "1.941 y0.054 y0.042, y0.076 y0.058 y0.044,y0.084 y0.063 y0.046, y0.097
Ž . Ž . Ž . Ž .Stock 2 13 0.0285 4.829 "2.625 y0.049 y0.038, y0.069 y0.052 y0.039, y0.076 y0.056 y0.041, y0.089
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We also tested whether the bounded variance assumption, i.e. a)2, was
supported by the data. Given the failure to reject similarity of the point estimate
for the tail index using the upper and lower tail, we combined these tails to
estimate the tail index and test for a bounded variance. In the case of stock returns,
we could reject the null of a-2 at a significance level of 8%, while for bonds the
marginal significance level for this test was below 1%. Note that for the lower tail
of stock returns, this null hypothesis was not rejected. This seems to be largely due
to the low number of order statistics selected by the Hall bootstrap procedure for
the lower tail, and the effect of this low value for m in the formula for the
variance of the tail index estimate.10

In the rightmost three columns of Table 2, we calculate the unit-investment
VaR values corresponding to various probabilities. The first of these columns is
headed ps1rn, to indicate that this calculation applies when the probability is
such that we would expect one occurrence in our sample. Looking at stock returns,
we see that the estimated exceedence value in the lower tail is y0.35 or a y35%
return. Thus, we estimate that there is a 1 in 804 chance that we will lose US$0.35
or more on a US$1 investment. In the upper tail, we estimate that there is a 1 in
804 chance of a monthly return of q31% or greater. Notice that we estimate much
lower VaR values for the two bond series. For corporate bonds, there is a 1 in 804
chance that we will experience a monthly return of y9.9% or less, and a monthly
return of q12.2% or higher. We also notice that even though the tail indices for
the lower tails of the two bond series differ considerably the VaR estimates are
quite similar. This can be explained by the values of X in the middleŽnym.

Ž .column, which is a measure of the scale, see formula 15 . Thus, even though the
government bond series is thinner tailed it has a large scale. Over a large range,
these two effects more or less cancel each other.

The most interesting calculations are those for probabilities much lower than
1rn, since we could use the empirical distribution for probabilities of 1rn or
larger. Based on our tail-behavior assumptions, we can estimate the VaR values of
events that occur with much less frequency than once in our sample. Hence, we

Ž .report a column headed ps1r 2n , a probability of 1 in 1608. For stock returns,
we estimate that there is a 1 in 1608 chance of a y46% or smaller return, and the

10 The estimation of the tail index parameter, the properties of the estimators, and the importance of
the choice of m, are all well-known issues in the literature on extremes. Our solution to this issue —
the Hill estimator with the Hall bootstrap — is but one of large number of possibilities. For instance,

Ž .Danielsson et al. 1996 proposed an estimator that was the ratio of second to first moments, showing
Ž .that it had lower bias than the Hill estimator in certain cases. Huisman et al. 2000 developed a

small-sample estimator for the tail index. If we had used their estimator, we would have estimated the
tail index parameters for the two French stocks as 7.438 and 4.475 instead of 4.37 and 4.829 as
indicated in Table 2. Using the Huisman et al. estimator would have changed little in our stock
selection exercise, as we use the lower estimate for the tail index for all portfolios involving both
stocks, so that for all but one portfolio the tail index value we used, 4.37, differed little from that we
would have used following Huisman et al., 4.475.
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same chance of a q40% or more gain. In contrast, for corporate bonds there is the
same 1 in 1608 chance of a y12.5% or lower return on or of a q14.9% or greater
gain. These estimates accord well with a priori notions that bonds are less subject
to such large negative or positive returns as are stocks.

The bottom portion of Table 2 reports similar statistics for our sample of daily
returns on our two French stocks. We only report the statistics that are calculated
on the combined data from the upper and lower tails. Note that the estimated tail
indices are very similar, either 4.5 or 4.8. The exceedences are calculated for three
probabilities, either 1 in 546 or 0.0018, or 0.75 in 546 or 0.00135, or 0.5 in 546 or
0.0009. In all cases, the exceedence quantiles are similar for our two stocks. In
fact, for the probability 0.0009, an event that only occurs on average once in a
period twice the size of our sample, we estimate the daily exceedence quantile to
be either 0.055 or 0.064 for our two stocks, less than 10% in 1 day.

We next turn to illustrate portfolio selection with limited downside risk. We
begin with our monthly US stock and bond data, and proceed to construct
hypothetical portfolios consisting of linear combinations of our stock index and

Žour corporate bond index. Government bond returns are highly correlated with
corporate bonds and hence portfolios consisting of government bonds and stocks

.are similar to the portfolios we investigate here. We vary the fraction of stocks
Ž .and bonds from 0% to 100% by steps of size 10%. This gives us 11 portfolios.

Ž .To construct the extreme quantiles and corresponding probabilities from Eq. 18 ,
we need the scale measure X and the tail index a . The X are readily foundŽm. Žm.
for each portfolio by ordering the returns from high to low. Note that due to the
mixing of stock and bond returns, the ordering may change as the proportions
change. The a values, however, are unaffected by the mixing as long as there is
some positive fraction of stocks in the portfolio. This follows from proposition 1.7

Ž .of Geluk and de Haan 1987 , which states that a convolution of two regularly
varying variables produces a random variable which has the same tail properties as
the fattest tail of the two convoluting variables, i.e. the fattest tail dominates. Thus,
for all portfolios except the one which involves 100% bonds, we take as2.601,
cf. Table 2, and for the portfolio with 100% bonds, we take as2.932.

We first calculate for each hypothetical portfolio the VaR quantiles that go with
various probabilities. These are reported in Table 3 without further comment.
Recall that the safety-first investor must specify the critical level of wealth, s, and
the probability d that wealth will not decline to the critical level or lower. Of
course, the critical wealth level, s, can be mapped into a critical return level, as is

Ž .implicit in Eq. 7 above. As an example, assume that ds0.000625, and further
assume that our investor states that the critical wealth level s is a fraction of

Ž .wealth, 0.70W. This maps into a gross return of 0.70 a net return of y30% , and
if there were no risk-free asset available then our safety-first investor would
choose a portfolio of 70% stocks, where q s1y0.2889s0.7111. However, ourd

risk averse safety-first investor can also borrow or lend at the risk-free rate r, and
Ž . Ž Ž ..in the first stage of his portfolio choice problem maximizes Ryr r ryq R .d
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Table 3
Estimated VaR levels corresponding to the stated probabilities

Ž .Portfolio of monthly Probabilities expected number of occurrences in parentheses
US stocks and 0.0025 0.00125 0.000625 0.0001
corporate bonds Ž . Ž . Ž . Ž .2 in 804 1 in 804 0.5 in 804 0.08 in 804

100% Stock y0.2696 y0.3519 y0.4594 y0.9293
90% Stock y0.2449 y0.3197 y0.4173 y0.8441
80% Stock y0.2158 y0.2816 y0.3677 y0.7437
70% Stock y0.1877 y0.2450 y0.3198 y0.6469
60% Stock y0.1695 y0.2213 y0.2889 y0.5844
50% Stock y0.1427 y0.1863 y0.2431 y0.4918
40% Stock y0.1125 y0.1468 y0.1917 y0.3877
30% Stock y0.0986 y0.1287 y0.1680 y0.3398
20% Stock y0.0953 y0.1244 y0.1624 y0.3286
10% Stock y0.0793 y0.1035 y0.1351 y0.2734
0% Stock y0.0780 y0.0988 y0.1251 y0.2337

Portfolio of daily 0.0018 0.00135 0.0009
Ž . Ž . Ž .French stocks 1 in 546 0.75 in 804 0.5 in 546

100% Stock 2 y0.0486 y0.0515 y0.0561
90% Stock 2 y0.0472 y0.0503 y0.0550
80% Stock 2 y0.0438 y0.0467 y0.0511
70% Stock 2 y0.0422 y0.0449 y0.0491
60% Stock 2 y0.0420 y0.0447 y0.0489
50% Stock 2 y0.0421 y0.0449 y0.0491
40% Stock 2 y0.0424 y0.0452 y0.0494
30% Stock 2 y0.0439 y0.0468 y0.0512
20% Stock 2 y0.0473 y0.0504 y0.0551
10% Stock 2 y0.0499 y0.0531 y0.0581
0% Stock 2 y0.0539 y0.0575 y0.0628

We calculate this quantity for two values of r in Table 4, and for two choices of
d , ds0.0025 and ds0.00625. Note that we calculate values for q using Tabled

3.
For ds0.0025, we consider the case rs1, so that the risk-free asset pays a

Žzero net return, and rs1.00303 which translates into an annual interest rate of
.3.7% , the average return on US Treasury Bills over 1926–1992. Optimal portfo-

Ž) ) .lios in Table 4 are marked with double asterisks . We see that for rs1, the
optimal portfolio is one that contains 10% stock and 90% bonds, while for
rs1.00303 the optimal portfolio is the one containing 40% stocks and 60%
bonds.

How much will our investor place in the risk-free asset? This depends on s, the
safety-first wealth level. For ss0.70 W, we can calculate the amount borrowed or

Ž . Ž .lent at the risk-free rate from Wqb q R ybrss. For rs1 and the optimald

Ž Ž .. Ž Ž . .portfolio of 10% stocks, we have that bs 0.70yq R Wr q R yr sd d
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Table 4
Portfolio selection for monthly US stocks and bonds

Ž . Ž . Ž . Ž . Ž .Portfolio q R Ry r r r y q , Ry r r r y q ,d d d

r s1 r s1.00303

Portfolio selection with d s0.0025
100% Stock 1y0.2696 0.02946 0.01802
90% Stock 1y0.2449 0.03101 0.01841
80% Stock 1y0.2158 0.03357 0.01926
70% Stock 1y0.1877 0.03674 0.02026
60% Stock 1y0.1695 0.03860 0.02036
50% Stock 1y0.1427 0.04341 0.02172

a40% Stock 1y0.1125 0.05196 0.02437
30% Stock 1y0.0986 0.05574 0.02426
20% Stock 1y0.0953 0.05397 0.02150

a10% Stock 1y0.0793 0.06046 0.02143
0% Stock 1y0.0780 0.05701 0.01747

Portfolio selection with d s0.000625
100% Stock 1y0.4594 0.01729 0.01063
90% Stock 1y0.4173 0.01820 0.01086
80% Stock 1y0.3677 0.01970 0.01137
70% Stock 1y0.3198 0.02156 0.01197
60% Stock 1y0.2889 0.02265 0.01204
50% Stock 1y0.2431 0.02548 0.01285

a40% Stock 1y0.1917 0.03049 0.01446
30% Stock 1y0.1680 0.03271 0.01441
20% Stock 1y0.1624 0.03167 0.01278
10% Stock 1y0.1351 0.03548 0.01277

a0% Stock 1y0.1251 0.03553 0.01104

a Indicates optimal portfolio among available choices.

Ž .y0.2207Wr 0.9207y1 s2.7831W. For an investor with wealth normalized to
Ws1, we have borrowing of an additional US$2.7831 to invest in a portfolio
consisting of 10% stocks and 90% bonds. The mean return on this portfolio is

Ž .1.00479, so this investor earns a mean return of 3.7831=1.00479 y2.7831s
Ž .1.0181. If disaster strikes, his wealth ends up as 3.7831=0.9207 y2.7831, or

0.70, just as the safety-first criterion demands.
What is wrong with investing 100% in stocks? Clearly the mean return is

higher, 1.00794. But the safety-first criterion severely limits the amount of wealth
Ž .our investor can place in such a risky investment. With ss0.7W and rs1 , we

Ž Ž .. Ž Ž . . Žcalculate that our investor will borrow bs 0.70yq R Wr q R yr s 0.70d d

. Ž .y0.7304 Wr 0.7304y1 s0.1128W, i.e. he will borrow 0.1128 for every dollar
Ž .of wealth. The expected return on this portfolio is 1.11280=1.00794 y0.1128

s1.00884, less than the return on the leveraged portfolio containing only 10%
stocks. If disaster strikes, the 100% stock portfolio will decline in value to
Ž .1.1128=0.7304 y0.1128s0.70, just as required by the safety-first constraint.



( )D.W. Jansen et al.rJournal of Empirical Finance 7 2000 247–269262

Fig. 1. US stock and bond index.

The conclusion, then, is that a leveraged portfolio containing mostly bonds
generates a superior rate of return given the constraint of holding the risk of a
gross return of 0.70 to a 0.0025 probability. Thus, a safety-first investor will not
want to go too far into stocks. Of course, this conclusion depends strongly on the
quantile estimates, which in turn depend on the choice of d , the probability that
the portfolio selection criterion will be violated. Also playing a role is the choice
of s, the safety-first portfolio value.

Ž .Fig. 1 illustrates the portfolio choice problem, plotting the mean return versus
VaR for a portfolio of stock and bond indices when rs1.003. If we turn to the
daily data on the two French stocks analyzed by G–L–S, we see in Table 3,
bottom half, the calculated VaR levels corresponding to the stated probabilities

Table 5
Portfolio selection for daily French stocks

Ž . Ž . Ž .Portfolio q R Ry r r r y q ,d d

r s1
a100% Stock 2 1y0.0486 0.0121

90% Stock 2 1y0.0472 0.0113
80% Stock 2 1y0.0438 0.0109
70% Stock 2 1y0.0422 0.0101
60% Stock 2 1y0.0420 0.0089
50% Stock 2 1y0.0421 0.0075
40% Stock 2 1y0.0424 0.0062
30% Stock 2 1y0.0439 0.0048
20% Stock 2 1y0.0473 0.0033
10% Stock 2 1y0.0499 0.0021
0% Stock 2 1y0.0539 0.0009

Portfolio selection with d s0.0018.
aOptimal portfolio.
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Fig. 2. G–L–S stocks.

Ž .0.0018, 0.00135, 0.0009 for the various portfolio proportions. These are much
more similar across the various portfolio combinations of the two French stocks
than they were for the various combinations of the US stock and bond indices in
the top half of Table 3.

Using these calculated VaR levels and the historical return data as an estimate
of the future mean return, we report in Table 5 the values of the VaR and the
portfolio selection criterion for the various portfolios of the two stocks. Here, we
can see quite clearly the effect of the large difference in mean returns over the
sample period. The large mean return on the second stock swamps any changes in
the VaR estimates, which are quite similar across portfolios, and leads to a corner
solution where only one stock is held in the portfolio.

Ž .Fig. 2 illustrates this feature. The limited downside risk portfolio selection
criterion chooses a corner solution where the entire portfolio is invested in one
stock. This is not a unique feature of our portfolio selection criterion. Fig. 3
illustrates mean-variance portfolio selection for these two stocks, using the in-sam-

Fig. 3. G–L–S stocks, mean variance.
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ple variance and covariance values to calculate the portfolio standard deviation. In
a mean-variance framework the sample period data for the two French stocks
would also lead to a corner solution.

This application shows that the safety-first criterion is not without its problems.
If the list of assets is unrestricted, safety-first portfolios can be very unbalanced.

Ž . Ž .As Dert and Oldenkamp 1997 and Vorst 1999 noted, the safety-first constraint
may be met by investing just enough into the riskless bond, while the rest of the

Žwealth is allocated to buying for out of the money call options since expected
.returns are increasing in the exercise price .

We leave for future research the amended safety-first criterion whereby in-
vestors maximize expected utility of the traditional form subject to their wealth
constraint, but also subject to the side constraint that the VaR level must be
maintained. Whatever the choice theoretic aspects of this reformulated safety-first
criterion, it is the practical problem faced by the financial industry that operates
under such an additional constraint under the Basle rules.

4. Extension to longer investment horizons

Suppose that the investor has a longer horizon than the monthly implicit in our
use of monthly returns. There is nothing in the safety-first theory that requires one
being wedded to a particular horizon. Extreme value theory allows one to easily
change the time horizon of the analysis, without changing the frequency of the
observations. This is analogous to the square root of time rule if normality
prevails; but the multiplication factor is different if the distributions are heavy
tailed. To show this, consider the expressions for the cdf’s of two return variables,
X and Y, where X is a one-period return, and Y is a k-period return or
k-convolution defined as:

k

Ys X .Ý i
is1

11 ŽIt is assumed that the X are i.i.d. In that case, from Feller’s theorem Feller,i
.1972, VIII.8 , if

F yx faxya , 18Ž . Ž .
as x™`, then

� 4 yaP YFyx fkax . 19Ž .
That is, the cdf for the extremes of the k-period return Y and the cdf for the
extremes of the single period return X are closely related, differing only by the

11 Since GARCH and other models of conditional heteroskedasticity are frequently applied to
financial data, it bears emphasis that this i.i.d. assumption is perhaps a strong one, one which may be
violated and whose violation may have important consequences for certain results in this section.
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factor k. Note that for the Chebyshev-based approach, the same multiplicative
factor k enters the RHS if one considers a k-period return. Hence, the asymptotic
difference between the two approaches remains equally important.

Ž .From Eq. 19 , it is straightforward to obtain the asymptotic change in the
Ž .quantile that is needed to keep the probability level risk level invariant under the
� 1r a 4 � 4k-period convolution. For x, sufficiently large P YFyk x fp XFyx .

Hence, there is a simple method for calculating the k-period unit-VaR from the
Ž .estimated single period VaR measure q that was given in 15 . The k-periodˆt

unit-VaR is

k1ra q . 20Ž .ˆ ˆt

Recall that under normality, or if the Chebyshev approach is used, then the rule is
to multiply the one-period quantile by the square root of time. If the distribution is
fat-tailed, the rule for the extreme quantiles is to apply an a-root of time

Ž .multiplication factor. This is further discussed in Dacarogna et al. 1995 .
Thus, we can easily extent the lexicographic safety-first criterion by incorporat-

ing choices over different time horizons, in the sense that the safety requirement
which is most binding has to be met before return maximization becomes an issue.

Ž .No new parameter estimates are necessary for the multiple horizon case, since 20
states that the k-horizon problem is just a scaled up version of the single period

Ž .horizon problem. Also, as is shown by Dacarogna et al. 1995 , one can benefit
from the highest frequency at which the data are available, since no reestimation
of the tail index a is necessary for the low frequency data. Extremes fromˆ
heavy-tailed distributions have a fractal nature. Thus, efficiency of a is generallyˆ
highest on the highest available frequency of the data. Hence, there are good
reasons for using an estimator of the tail index over high-frequency data even
when the estimated tail index is to be used to calculate exceedences over lower
frequency or time-aggregated data.

We conducted a small simulation to illustrate the above arguments. We
simulated 10,000 observations from a Student’s t with 3 df , and calculated loss
levels for three different risk levels for both the single-period and two multiple-
period returns. These are reported in Table 6. The true loss-level values are
reported in the square brackets. The q estimates are reasonably close to the true
values, but the results deteriorate if one moves to the p value, which is below the

Ž .inverse of the sample size in the last row of the table . The precision and bias of
course also increase if one moves to the 2-period and 4-period horizons. The
combination of extremely low risk levels and multiple horizons in the lower

Ž .right-hand corner of the table yields a 95% confidence band as wide as 45–144 .
One might ask whether reestimation instead of calculating the multiple horizon
results from the single period results would not improve the situation. In fact, if
one used the reestimation procedure the confidence band becomes even wider, i.e.
it ranges from y57 to q135, which is even worse. The reason is that the
reduction in sample size which one has to bear with if one reestimates the
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Table 6
Simulated Student’s t loss levels and time aggregation

Risk level Single period Multiple period
1r a 1raP x 2 x 4 xp p p

Ž . Ž . Ž .0.0005 13.60 11.07–16.14 17.49 13.52–24.47 22.51 16.44–28.59
w x w x w x12.92 16.64 21.40

Ž . Ž . Ž .0.0001 24.42 17.49–31.35 31.45 21.15–41.75 40.53 25.46–55.59
w x w x w x22.20 16.64 35.79

Ž . Ž . Ž .0.00001 56.71 32.28–81.13 73.16 38.35–107.96 94.43 45.21–143.64
w x w x w x47.93 60.50 76.35

The numbers presented are averages over 250 replications. The 95% bootstrap confidence intervals are
Ž .presented in parentheses. In each replication, a sample of 10,000 Student’s t 3 df distributed

observations is drawn. Within square brackets, the theoretical quantile values are reported.

parameters on the aggregated return data outweighs the potential gain from using
Žthe aggregated data. It can be shown that direct estimation for the single period

data should give upwards biased quantiles, as is the case in Table 6, while for the
multiperiod convoluted Student’s t data the bias should go in the other direction.
This latter fact is not present in the Table 8, since we used the single period
estimates to calculate the multiperiod quantiles. But the bias reduction that direct

.estimation would yield, does not outweigh the loss in efficiency. Tables 7 and 8
contain the estimated VAR levels corresponding to the stated probabilities for
various portfolios and the optimal portfolios for the annual horizon. With a net
risk-free rate of zero, the optimal portfolio contains 10% stocks, for a net risk-free
rate of 0.003, the optimal portfolio is one that contains 40% stocks. Note that these
results are obtained for a risk level equal to the inverse of the sample size. The

Table 7
Estimated VaR levels corresponding to stated probabilities

Ž .Portfolios Probabilities expected number of occurrences in parentheses

Ž . Ž .0.015 1 in 67 0.01 1 in 100

100% Stock y0.3518 y0.4112
90% Stock y0.3197 y0.3736
80% Stock y0.2817 y0.3292
70% Stock y0.2526 y0.2952
60% Stock y0.2214 y0.2587
50% Stock y0.1863 y0.2178
40% Stock y0.1469 y0.1716
30% Stock y0.1287 y0.1504
20% Stock y0.1243 y0.1453
10% Stock y0.1035 y0.1209
0% Stock y0.0987 y0.1133

Ž .US stock and bond portfolios, annual 67 years of annual data .
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Table 8
Portfolio selection with d s0.01

Ž . Ž . Ž . Ž . Ž .Portfolio q R Ry r r r y q , Ry r r r y q ,d d d

r s1 r s1.0370

100% Stock 1y0.4112 0.2422 0.1397
90% Stock 1y0.3736 0.2529 0.1400
80% Stock 1y0.3292 0.2714 0.1429
70% Stock 1y0.2952 0.2853 0.1421
60% Stock 1y0.2587 0.3057 0.1423
50% Stock 1y0.2178 0.3395 0.1450

a40% Stock 1y0.1716 0.4010 0.1525
30% Stock 1y0.1504 0.4235 0.1424
20% Stock 1y0.1453 0.4030 0.1183

a10% Stock 1y0.1209 0.4419 0.1041
0% Stock 1y0.1133 0.4263 0.0752

a Indicates optimal portfolio among choices listed.

resulting portfolio allocation is very similar to the one under the monthly
investment horizon. For the rs1 case and ss0.7W we find that the average
yearly net return on the optimal portfolio is 13%; while if rs1.037 and
ss0.8W, the average return on the optimal portfolio is 7%.

5. Conclusion

In this paper, we deal with the trade-off between expected return and risk when
investors desire limited downside risk. We show that portfolio selection with
limited downside risk includes both the safety-first investor of Roy and, more

Ž .specifically, Arzac and Bawa 1977 , as well as the VaR-constrained investor of
G–L–S. We calculate the optimal VaR-efficient portfolios for both a portfolio of
US stocks and bonds indices observed monthly over the period 1926–1992 and for
a portfolio of two French stocks observed daily for a period in the 1990s. These
applications show how extreme value theory proves to be a useful procedure for
estimating VaR-efficient portfolios and for describing portfolio risk for events far
out in the tails of the distribution. But we also discussed the limitations of the
current safety-first criterion, and argued it may be worthwhile to investigate its
merits as an additional side constraint to regular utility maximization.
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