
Reliability of neural network based Value-at-Risk

Estimates

Ralf Prinzler

August 1999

Abstract

Value-at-Risk (VaR) has become an increasingly popular measure
in �nancial risk measurement. To calculate VaR various models have
been suggested. This paper shows briey how neural networks can be
applied to calculating VaR. The paper focusses on the reliability of
the VaR estimates using a bootstrap procedure. Results on a foreign
exchange portfolio suggest that connectionist VaR estimates based on
mixture density models show bias that is relatively small on average but
varies with time. Standard errors due to estimation error and random
network initialisation are relatively small and lead to moderate model
failure rates.

Keywords: Value-at-Risk, Mixture Densities, Neural Networks, Bootstrap-
ping

1 Introduction

Over the past few years the Value-at-Risk (VaR) has become an increasingly
popular measure in �nancial risk measurement. The VaR of a single invest-
ment or a portfolio of investments is de�ned as the worst expected �nancial
loss over a given investment horizon with a given probability. In a statistical
sense the VaR constitutes the upper bound of a one-sided prediction interval
placed on the probability distribution of future portfolio losses.
More formally we can de�ne the VaR as the p-quantile of the distribution
of future portfolio losses

Prob (Lt � VaR) = p (1)

Lt = Wt��t �Wt (2)

where Wt denotes the market value of a portfolio at a given time t and Lt
refers to the loss cumulated over the investment horizon �t. p refers to
a given probability. Positive values of Lt therefore denote a loss; negative

1

values denote a gain. If we specify an investment horizon of �t = 1 day and
a probability of say 95% a VaR measure of 100.000$ simply says that the
probability of loosing more than 100.000$ over the next day is less than 5%.
If we wish to calculate the VaR of a portfolio the most common approach is to
identify basic risk factors that determine future portfolio value. The choice of
risk factors depends on the portfolio. Typical risk factors are exchange rates,
prices of stocks and commodities, interest rates etc.1 The next most common
step is to express the impact of relevant risk factors R = (R1; R2; : : : ; Rk)

0

on the portfolio value W . The portfolio loss - the object of interest in VaR
calculation - is typically modelled as a function of relative or log-changes in
those risk factors. This is expressed in equation (3) where we denote relative
or log-changes (risk factor returns) by X = (X1;X2; : : : ;Xk)

0.

Lt = W (Rt��t
)�W (Rt)

Lt = L(Xt) (3)

Thus we can write for a very general VaR model

Prob (L(Xt) � VaR j�t��t
) = p (4)

where �t��t
denotes the information set available at the time the prediction

is made. The contents of � depend on the stochastic process that is used to
describe the evolution of fRgt over time. If we consider the special case of
independent and identically distributed (i.i.d.) risk factor returnsX the past
history of risk factor prices is irrelevant for predicting VaR except the most
recent realisations of Rt��t = rt��t which determine the current portfolio
value and serve as scaling parameters in (4).
Equation (4) is important for some reasons. First we have to keep in mind
that the assumption of i.i.d. factor returns is inadequate for many �nancial
time series. This implies that VaR calculation has to account for intertem-
poral as well as for cross-sectional dependencies2 among risk factor returns.
The existence of intertemporal dependencies leads straight away to the in-
sight that adequate VaR calculations have to be based on the conditional
distribution of market risk returns, reecting the history of the price process.
Second we see from (3) that the distribution of future portfolio losses can
in principle be calculated from the joint distribution of market risk returns.
In practice this calculation can be done only for special cases. Even if we
know the distribution fX(x) of risk returns the calculation of fL(l) can be
impossible, if L(Xt) is a nonlinear function.

3

Neural networks can enter into a VaR model in two di�erent ways. The
�rst one is to use neural netwoks as density estimators. Alternatively we

1Sometimes the term risk factor refers to relative or log-changes in those prices.
2Cross-sectional dependencies are common and reected for example in correlations

between market risk returns.
3For an overview over some popular VaR models see for example [6].

2

could use neural networks to model or to approximate L(X).4 Of course
one may combine both applications. Throughout this paper we consider the
case where neural netwoks are used as density estimators.
The rest of the paper is organized as follows. Section 2 introduces Mixture
Density Networks as a very exible instrument for density estimation and
shows how VaR estimates can be calculated if we consider linear pricing
functions. Section 3 gives a brief overview over the bootstrap which o�ers
a conceptually simple although computationally extensive way to estimate
the reliability of VaR estimates. Section 4 shows two applications.

2 The Estimation of Value-at-Risk using Mixture

Density Networks

As we have seen in the previous section one major building block in VaR
analysis is the estimation of the joint distribution of market risk returns
fX(x). There are various ways to estimate this distribution ranging from
nonparametric to parametric techniques. Only recently hybrid models have
been introduced.5

In this paper we assume that the unknown joint distribution of market
risk returns X = (X1;X2; : : : ;Xk)

0 can be approximated by the following
mixture model:6

fXjZ=z (x) =
mX
i=1

�i(z)hi (xjz) (5)

where the component densities hi are Gaussian with a single variance pa-
rameter

hi(xjz) = (2�)�k=2�i(z)
�k exp

�jjx� �i(z)jj

2

2�2i (z)

!
: (6)

In order to guarantee (5) to be a probability density function the mixing
coeÆcients have to satisfyX

i

�i = 1; �i � 0; i = 1; 2; : : : m:

Figure 1 provides a graphical representation of a Mixture Density Network

(MDN).7

To understand the inner working of a MDN note that (5) and (6) de�ne a
conditional probability distribution, where the parameters �i; �i; �i of each

4This could be interesting in cases where the portfolio under consideration includes
options.

5See [3] for details.
6For a further application of mixture models in VaR estimation see [9].
7See [1] and [2].

3

7

z1 z2 zl: : :

3 � }

6 o

f(xjz) =Pm
i=1 �i(z)hi(xjz)

> } � I 3 }

6

-

�i = �i(z)

�i = �i(z)
�ij = �ij(z)

Figure 1: Mixture Density Network

component density hi; i = 1; 2; : : : ;m; are modelled as functions of the neural
network inputs z = (z1; z2; : : : ; zl)

0. Thus the network input represents the
conditioning variables. If we choose m and the number of hidden units in
the neural network suÆciently large a MDN is capable of modelling a very
broad class of distributions.
Mixture density networks contain well known models as a special case. Con-
sider the case where one single risk factor return X is assumed to follow an
ARCH(1) process:

xt = �tut

�2t = ! + �x2t�1; ! � 0; � � 0

where ut is white noise with zero mean and unit variance. If we require ut
to be distributed normally ut � N(0; 1) it is well known that the conditional
distribution of xt is given by

xtj�t�1 � N(0; �2t):

This model can be implemented easily into a MDN.8 The ARCH(1) relevant
information set �t�1 just contains xt�1.

8We need to adjust the MDN slightly by choosing one single component density (m =

4

To estimate the mixture parameters, i.e. to �t the model we need to mini-
mize a suitable error function. In our case a suitable9 error function is given
by the negative log-likelihood

E = �lnL =
TX
t=1

Et (7)

Et = �ln
(

mX
i=1

�i(zt)hi(xtjzt)
)

(8)

which is minimized with respect to the network weights using standard tech-
niques applicable to neural networks. In this paper we apply standard error-
backpropagation.10

We now discuss how we can use a MDN for VaR estimation. We consider
the case of linear portfolios11 w = (w1; w2; : : : ; wk)

0 where it is relatively
simple to calculate an estimate of VaR. When training the mixture density
network we estimate the joint distribution of market risk returns

f̂XtjZt=zt(x) = f(b�t; b�2;(x)
t ; b�(x)

t jDx;z): (9)

conditioned on the network inputs zt. Dx;z denotes the data set used to
estimate the model. The choice of zt depends on the VaR model used.
The portfolio loss Lt is given by

Lt = L(Xt) = w0Xt (10)

Since L(Xt)
12 is a simple function we can �nd an analytical expression for

fLt
(l) by density transformation. It can be shown that fLt

(l) again is a
mixture density. Our estimate of fLt

(l) is given by

f̂Lt
(l) =

mX
i=1

b�i;thi;t(l) (11)

where

hi;t(l) =
1p

2�b�i;t exp
"
�1

2

(l � b�i;t)2b�2i;t
#

1), with the mixing coeÆcient �xed to unity and mean �xed to zero, and one single linear
hidden unit with bias. For the input vector we choose zt = lnxt�1. Furthermore we have
to create a special network weight structure and make slight amendments to the error
function.

9See [5] for a critical discussion.
10For more details see [1] and [2].
11Each element wi represents the (negative) sensitivity of the portfolio value with respect

to Xi.
12Throughout this paper we assume the portfolio loss function L(Xt) to be constant.

With other words we assume the same portfolio composition for every t.

5

with

b�i;t = kX
j=1

wj b�(x)ij;t and b�2i;t = b�2;(x)i;t

kX
j=1

w2
j i = 1; 2; : : : ;m:

b�i;t, b�(x)ij;t and b�2;(x)i;t denote our estimates according to (9).
Recall that VaR is de�ned to be the p-Quantile of fLt

(l) (see equation (4)).
If we replace the unknown probability density function fLt

(l) by f̂Lt
(l) we

can write using (11)

�1;t

Z VaR

�1
h1;t(l) dl + �2;t

Z VaR

�1
h2;t(l) dl + : : :+ �m;t

Z VaR

�1
hm;t(l) dl = p

(12)
It is not possible to solve this equation analytically. We therefore calculatedVaR, which is our estimate of the true VaR, for a given p using an iterative
scheme. Furthermore it is of considerable interest to obtain information
about the reliability of VaR. Since it is impossible to calculate standard
errors directly we use a bootstrap procedure as described in the following
section.

3 Bootstrapping Parameter Estimates

The application of the bootstrap to evaluate the performance of neural net-
works is not new. Tibshirani [8] compares di�erent methods that can be ap-
plied to estimate prediction errors of neural networks and �nds the bootstrap
approach superior. In his paper Tibshirani focusses on the the application
of multi-layer perceptrons to prediction tasks. It should be noted though
that the bootstrap procedure is not limited to that particular case. LeBaron
and Weigend [10] apply the bootstrap to evaluate time series predictions of
�nancial data.
The basic idea13 of the bootstrap procedure is to "enlarge" a given data
set (x1; x2; : : : ; xn) from an unknown distribution F by repeated resampling
with replacement. Denote the true but unknown parameter of interest by
� = t(F) and the estimate using the available data set (x1; x2; : : : ; xn) by
�̂ = t(F̂) where F̂ denotes the empirical distribution.14

Resampling B times from the observed data sample leads to B di�erent
bootstrap samples denoted by � upon which bootstrap estimates �̂� of � can
be calculated.

F̂ ! (xb�1 ; x
b�
2 ; : : : ; x

b�
n)

�̂�(b) = t(F̂ �); b = 1; 2; : : : B
13See for an introduction Efron and Tibshirani [4]. In the following we use their termi-

nology.
14�̂ = t(F̂) is called the plug-in estimate of �. We use �̂ = t(F̂) later on since we

calculate our parameter of interest VaR based on the empirical distribution f̂L(l).

6

The information contained in the empirical distribution of �̂� can be used
to correct �̂ for bias, to estimate standard errors or to construct con�dence
intervals. If we wish to calculate the standard error se�̂ of the parameter

estimate �̂ we can use the standard error of the bootstrap estimates

bseB =

vuut BX
b=1

�
�̂�(b)� ���

�2
=(B � 1) (13)

with ��� =
PB

b=1 �̂
�(b)=B as an estimate. Calculating standard errors using

the bootstrap can be applied in situations where no analytic solutions can
be found. In the case of VaR calculation our parameter of interest

b� = dVaR = F̂�1
L (p)

is a nonlinear function of the network inputs z, where no formula can be
given to calculate se�̂.

Bootstrap replications �̂�(b) may also be used to correct the bias

biasF = EF (�̂)� �

of an estimator. The basic idea is to estimate biasF using the bootstrap
estimate

biasF̂ = E F̂ (�̂)� t(F̂)

where t(F̂) denotes the plug-in estimate of �. The bootstrap expectation
E F̂ (�̂) can be approximated by the bootstrap average ��� introduced above.
Thus our bootstrap estimate of bias based on B replications is

dbiasB = ��� � t(F̂) = ��� � �̂ (14)

The bias corrected estimate of � is given by

�� = �̂ � dbiasB
Bias correction can be dangerous in practice since variability in dbiasB may
lead to a higher standard error in ��. This again can be checked using boot-
strapping. Efron and Tibshirani15 recommend to do without bias correction
if dbiasB is small compared to the standard error estimate bseB . If the di�er-
ence between bias and standard error is large this may indicate that �̂ = t(F̂)
is not a suitable estimate of �.

15See [4] p. 138f.

7

4 Two examples

Data from a mixture distribution

To show the reliability of MDN-based quantile estimates we consider two
examples. The �rst one is particularly simple. 10000 realisations of a uni-
variate random variable was drawn from the (unconditional) mixture distri-
bution

fX(x) = �1h1(x) + �2h2(x)

where hi(x); i = 1; 2 denotes the density function of the normal distribution
with parameters �i and �i.
In this example we set �1 = 0:6; �2 = 0:4; �1 = 0:8; �2 = 1:2; �1 = 0 and
�2 = 0:5. Let the 95% quantile � = F�1

X (0:95) be the parameter of interest.
� can be calculated according to (12) and yields � = 1:947.16 The 95%
quantile of the empirical distribution yields �̂ = 1:977.
We start our analysis by training a very simple mixture density network
with a single network input �xed to unity, one linear hidden unit and two
component densities.17

First tests showed that choosing the right learning rate18 � is of considerable
importance for training success. Too large a learning rate leads to rapid
swings in the mixture parameters. We tested variable as well as constant
learning rates and conducted several simulation runs with varying length.
It turned out that a small learning rate combined with parameter updating
after each data pattern lead to suÆciently fast training. After 100 training
cycles only very small changes in network weights could be observed.
In this investigation we did not employ generalization techniques since the
number of network parameters is very small compared to the number of
training patterns and thus the danger of over�tting is small. Table 1 shows
results for the 95%-quantile obtained with training runs ranging from 100
to 1000 cycles and constant or variable learning rates. We note that our
neural network-based estimates �̂NN tend to be larger than both � and �̂.
Table 2 shows some bootstrap results. From the �rst experiment (� = 0:01)
we see that a relatively large learning rate leads to a larger standard error.
This con�rms �ndings of earlier studies that very small learning rates should
be used when training MDN. From Table 1 we see that � lies within a one
standard error interval around �̂NN for both experiments. In the second
experiment (� = 0:001) we also note a very small bootstrap estimate of
bias.

16This value has been calculated using an iterative scheme.
17The neural network part of the mixture model does not need to be complex since no

relationship to conditional variables has to be modelled. Here in fact we would not need
the neural network part at all.

18A learning rate is a small number multiplied with the gradient of the error function.

8

variable learning rate

� = 0:1; : : : ; 0:001 � = 0:05; : : : ; 0:001 � = 0:01; : : : ; 0:0001

100 500 1000 100 500 1000 100 500 1000

1.983 1.983 1.983 1.983 1.983 1.983 1.986 1.986 1.986

�xed learning rate

� = 0:01 � = 0:001 � = 0:0001

100 500 1000 100 500 1000 100 500 1000

1.935 1.935 1.935 1.983 1.983 1.983 1.994 1.988 1.986

Table 1: Values for 95%-quantile estimates �̂NN for di�erent learning rates
� and training cycles (100; 500; 1000).

�̂NN ��� bseB �̂NN � bseB dbiasB
� = 0:01 1.935 2.001 0.092 1.843: : : 2.027 0.066

� = 0:001 1.983 1.986 0.036 1.947: : : 2.019 0.003

Table 2: Bootstrap results (B=100) for two MDN with one hidden unit.
The network was trained over 100 training cycles.

Foreign exchange data

In a second example we consider VaR estimates for a foreign exchange port-
folio. We take the perspective of an investor whose home currency is the
German Mark (DM) and who invests his money at every instance equally
into US-Dollar (USD), Swiss Franc (CHF) and Japanese Yen (JPY) cash
positions. Obviously the currencies constitute the only risk factors in this
portfolio. We de�ne the daily returns by

XC;t = ln(KDM/C;t
=KDM/C;t�1

)

where K denotes the price of a currency C=USD,CHF,JPY expressed in
German Mark.
In the next step we decided about an appropriate input vector z which is
assumed to be useful in predicting the joint conditional distribution of ex-
change rate returns. We experimented with two di�erent inputs. In the �rst
case we used 5-day historical moving averages and 5-day historical moving
standard deviations for each currency, in the second case we used the same
inputs but calculated over a 30 day window. Both choices are arbitrary. The
motivation for our approach was to �nd inputs that are easy to calculate and
that may be able to catch the time varying properties of the return process.
Results reported here were obtained for the case with inputs calculated over
the 30 day window.
In our analysis we used foreign exchange data from 5th September 1985

9

Experiment I Experiment II

Component Densities 3 5

Hidden Neurons 5 5

Learning Rate 0.0001 0.0001

Training Cycles 1000 1000

Model Failures in %

Training (p = 0:95) 5.5 4.7

Test (p = 0:95) 6.8 5.6

Training (p = 0:99) 1.1 1.0

Test (p = 0:99) 1.6 0.4

Table 3: Model speci�cation and results for two experiments with foreign
exchange data.

till 31st August 1994 (2250 data patterns). The �rst 2000 patterns were
used for estimation, the remaining 250 pattern were used for testing. We
experimented with various learning parameters and networks of di�erent
complexity. Since bootstrapping is a very time consuming procedure only
two models were bootstrapped (B = 100). Results and model con�guration
are reported only for these two simulations (see Table 3) were the neural
network part of the mixture model was implemented as a fully connected
multi-layer perceptron with one hidden layer. The network was trained using
standard error-backpropagation.

The experiments were conducted as follows.

First the complete non-bootstrapped training data set was used to estimate
the mixture parameters. Based on the estimated mixture parameters and
the given portfolio composition we calculated estimates dVaRt for the training
data set (t = 1; 2; : : : ; 2000, ex post prediction) and the test data set (t =
2001; : : : ; 2250, ex ante prediction). VaR estimates were calculated for the
95% and 99% level. Additionally model failures were calculated. A VaR
model is regarded to have failed if the actual portfolio loss Lt exceeds the
prediction dVaRt. See Table 3 for results.

In the next step both models were bootstrapped. In each bootstrap run a
new bootstrap sample was generated, the network weights randomly initial-
ized and the mixture parameter estimated. After estimation the bootstrap
sample was presented to the network again and bootstrap VaR estimatesdVaR�

b;t; b = 1; 2; : : : ; 100; t = 1; 2; : : : ; 2000 generated. This procedure yields
approximately 100 bootstrap VaR estimates for each training pattern. Note
that only the training data set was bootstrapped.

The average of the bootstrapped VaR estimates VaR
�
t and the standard

10

��

����

��

����

��

����

�

���

�

���

�

���

����

Figure 2: Value-at-Risk estimates dVaRt (VaR) for the 95% level and actual
portlolio losses Lt (L). The values shown have been calculated for the �rst
1000 data patterns of the training data set.

error estimate bseB;t; t = 1; 2; : : : ; 2000 were used to evaluate standard error

and bias of dVaRt (See equations (13) and (14)). Figure 2 and 3 show re-
sults obtained from experiment II for the �rst 1000 training patterns. The
results shows more variation in the bias estimate than in the standard error
estimate. Furthermore we note the standard errors change in accordance
with dVaRt. They are higher in times with higher volatility and vice versa.
The bootstrap bias estimate dbiasB;t = VaR

�
t � dVaRt changes over time and

can be quite large compared to the standard error. Due to the variability in
bias there is no obvious indication wheter or not to correct dVaRt for bias.
Further insight into the source of bias is therefore required.

In a �nal step we investigate the possible impact of errors in dVaRt. Variabil-
ity in dVaRt may have di�erent sources. A �rst source is the estimation error
due to �nite sample size. Other error components can be traced back to the
random start conditions in the estimation procedure or to model misspeci�-
cation. The procedure described above estimates the �rst two types of error
simultaneously. To show the impact of errors on VaR predictions over the
test set we construct a two standard error interval around dVaRt. We do this
by adding and subtracting the double average bootstrap standard error19

19This is a simple approach. It can be improved by calculating VaR predictions over
the test set after each bootstrap simulation. This leads to a set of bootstrap preditions
with time varying standard error intervals.

11

�����

����

�����

����

�����

�

����

���

����

���

����

����
����

Figure 3: Bias dbiasB;t (bias) and standard error bseB;t (se B) estimates cal-
culated for the �rst 1000 data patterns of the training data set.

����

��

����

��

����

�

���

�

���

�

���

��� ����

���� ����

Figure 4: Value-at-Risk estimates on a 95% level and their two standard
error intervals. Values are reported for a held out data set with 250 test
patterns. � = 0:0001. Corresponding model failures in %: 6.8-5.6-3.2.

12

over the training set

�seB =
1

2000

2000X
t=1

bseB;t
dVaR+

t = dVaRt + 2 �seBdVaR�

t = dVaRt � 2 �seB ; t = 2001; 2002; : : : ; 2250

to our VaR predictions.20 Since the distribution of bootstrapped parameter
estimates is asymptotically normal we can expect to �nd the true parameter
within the two standard error interval in 95% of all cases. With other words
we can assert with 97.5% con�dence that the upper bound of the tolerance
interval will be exceeded by portfolio losses only in 5% of all cases. Figure 4
shows dVaRt together with the tolerance interval for experiment II (test data).
In experiment I the results obtained were not as good. The lower/upper
border of the two standard error interval lead to 10.4-6.8-3.6 model failures
in 100 days.

5 Conclusions

The results presented in this paper con�rm earlier �ndings [7] that neural
networks can successfully be applied to VaR estimation. We showed that
connectionist VaR estimates based on Mixture Density Networks do not
seem to be subject to a systematic bias. Standard errors calculated using a
bootstrap procedure are not as large as to prevent the practical application
of a connectionist VaR model. In this paper a simple and slow estimation
technique was used. The use of more sophisticated model estimation and
generalization techniques may speed up network learning and improve the
quality of VaR estimates. Furthermore it is important to show the impact
of random network initialization and model misspeci�cation on the error of
VaR estimates to explain possible sources of time-varying bias and standard
errors.

References

[1] Christopher M. Bishop. Mixture density networks. Technical Report
NCRG/94/004, Neural Computing Research Group, Aston University,
Birmingham, February 1994.

[2] Christopher M. Bishop. Neural Networks for Pattern Recognition.
Clarendon Press, Oxford, UK, 1995.

20In statistical terminology we construct a tolerance interval.

13

[3] Jacob Boudoukh, Matthew Richardson, and Robert Whitelaw. The
best of both worlds. Risk, pages 64{76, May 1998.

[4] B. Efron and R.J. Tibshirani. An Introduction to the Bootstrap. Chap-
man & Hall, 1993.

[5] James Hamilton. A quasi-bayesian approach to estimating parameters
for mixtures of normal distributions. Journal of Business & Economic

Statistics, 9(1):27{39, 1991.

[6] Philippe Jorion. Value at Risk: The new benchmark for controlling

market risk. Irwin, Chicago, London, Singapore, 1997.

[7] Hermann Locarek-Junge and Ralf Prinzler. Estimating value-at-risk
using neural networks. In H.-U. Buhl and C. Weinhardt, editors, In-
formationssysteme in der Finanzwirtschaft IF98, 1998.

[8] R. Tibshirani. A comparison of some error estimates for neural network
models. Working Paper, University of Toronto, 1995.

[9] Subu Venkataraman. Value-at-risk for a mixture of normal distribu-
tions: The use of quasi-bayesian estimation techniques. Economic Per-
spectives, 21(2), 1997.

[10] Andreas S. Weigend and Blake LeBaron. Evaluating neural network
predictors using bootstrapping. ICONIP'94-Soul, 1994.

14

