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1 Introduction

One of the main advantages of portfolios over single assets is that risk can be diversified without
necessarily reducing the expected return — provided the “right” assets are selected and they are
assigned the “right” weights. Since in practice investors tend to restrict themselves to a rather small
number of different assets, the decision which securities to include or not is a crucial one which turns
out to be NP–hard.

In this paper we suggest a hybrid local search algorithm which combines principles of Simulated An-
nealing and Evolutionary Strategies and which proved to highly efficiently approach this problem.

2 Approach

2.1 Model and Algorithm

We assume a market with N different securities with expected returns of ri and covariances σij . If the
investor wants to include at most k ∈ [1, ..., N ] different assets and asset i is included in the portfolio,
a binary variable bi is set equal to 1, otherwise it is 0. The asset’s weight in the portfolio, wi, shall be
nonnegative and the weights of all assets included in the portfolio are to add up to 1. Since rational
risk averse investors will try to maximize their portfolio’s expected return, rP , while minimizing its
risk, σP , the optimization model can be stated as follows:1

max λ · rP − (1− λ) · σP

1A survey on “traditional” portfolio selection according to Markowitz as well as subsequent models, constrained and
unconstrained, can be found in [3].
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subject to

rP =
N∑
i=1

wi · ri

σp =

√√√√ N∑
i=1

N∑
j=1

wi · wj · σij

0 ≤ λ ≤ 1
wi ≥ 0 ∀i
N∑
i=1

wi = 1

N∑
i=1

bi ≤ k where bi =

{
1 wi > 0
0 wi = 0

To approach this NP–hard problem, we suggest an iterative algorithm that uses local search strategies
and enhances Simulated Annealing (SA) with principles known from evolutionary processes.2 The
central idea of SA is to start with some arbitrary solution and have it modified by allowing random
changes whenever they result in an improvement. Additionally, to overcome local optima changes that
come with an impairment are accepted, yet with decreasing probability. The decision of whether to
allow a modification or not is based on the Metropolis function known from the solidification in metals.
However, unlike the standard version of SA where just one crystal is considered this algorithm uses a
whole “population” of crystals which are permanently ranked. According to evolutionary principles,
the fittest of the population’s members are favored whereas the worst are eliminated and replaced either
by a clone of one of the best crystals or some new individual which is endowed with properties of the
best crystals.

The algorithm starts with a random initialization of the crystals each representing a portfolio. This
includes selecting k of the N available assets and assigning them random positive weights such that
their sum adds up to 1, i.e.,

∑
i wict = 1 where wict is the weight of asset i in crystal c’s portfolio in

iteration t. The subsequent iterations consist of three stages: modification of the portfolio structure;
evaluation and ranking of the crystals; replacement of the poorest crystals in the population.

Modification. For each crystal c, dk assets of this crystal’s portfolio Pc are selected. For these assets
changes in the respective weights are changed according to w′ict = max {wict + z̃ict; 0} where
z̃ict ∈ [−Ut;Ut], the other assets’ weights are left unchanged, i.e., w′ict = wict. Ut indicates
the bandwidth for changes in iteration t which is steadily narrowed by Ut = Ut−1 · γU . If w′ict
becomes zero, with a probability pr the respective asset is replaced by a new asset j which is not
yet included (i.e., wjct = 0) and is given some random weight w′jct ∈ [0; 2 ·Ut]. When selecting j,
preferences based on the “Averaged Idol” as introduced later are used. With probability 1 − pr
asset i is kept in the portfolio with zero weight which means that there are less than k assets
represented in the portfolio.

Having changed the weights and standardized them such that
∑

iw
′
ict = 1, the fitness of the

modified portfolio P ′ is calculated. According to the principles of SA, the modifications are
accepted with probability p which comes from the Metropolis function p = min

{
1; exp

(
∆F
Tt

)}
.

∆F = FP −FP ′ is the change in the fitness function (here: objective function) and Tt = Tt−1 · γT
is the temperature in iteration t. Due to this definition, impairments are the more unlikely the
larger the decrease in the fitness function and the lower the temperature, i.e., the more iterations

2An application of Simulated Annealing on portfolio optimization as well as a presentation of the underlying principles
of this method can be found in [2].
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have already been passed. For each crystal, this procedure of generating a modified portfolio and
deciding whether to accept it or not is repeated for a fixed number of times.

Evaluation. The crystals are ranked according to their fitness. This evaluation and ranking procedure
is crucial for the decision which solutions to reinforce and which to eliminate. Similar to the rank
based system introduced in [1] we allow only the best π of all crystals to be role models for others
(we shall call them prodigies). According on their ranks, the prodigies’ portfolios are assigned
linearly decreasing amplifying factors ranging from π + 1 down to 1. In addition we enlarge the
group of role models by ε elitists all of which represent the best overall solution found so far. This
is done by assigning the best portfolio found so far an amplifying factor of ε and treating it as an
additional prodigy. Crystals of the current population that are not prodigies, have an amplifying
factor of 0.

Replacement. To reinforce promising tendencies on the one hand and eliminate rather disappointing
ones on the other, the ω worst crystals of the current population are replaced with crystals
which are considered to have high potential. We distinguish two alternatives of high potential
replacements:

Clone: Based on the amplifying factors, probabilities for selecting an existing portfolio are cal-
culated such that the better a prodigy’s fitness the higher the probability it is chosen. An
unchanged replicate of this portfolio replaces the poor portfolio. The effect of cloning is that
a new crystal starts off with a supposedly good structure but will evolve a different structure
than its twin.

Averaged Idol: An average weight for each asset is calculated based on the elitists’ and prodi-
gies’ portfolios. The weights wict of asset i in crystal c’s portfolio are multiplied by the
amplifying factors, added up, and normalized so that the overall sum is 1. These “averaged
weights” are used for probabilities to select k assets and assign them weights that reflect
these averaged weights (yet with a random component). The effect of this averaging is that
an assets is preferred when it is found in many a prodigies’/elitists’ portfolio and has a high
weight in those portfolios. Unlike in usual genetic programming systems, there are not just
two parents but a whole group of successful ancestors that pass on their endowment.

With a probability of pc a “Clone” will be chosen, with a probability of 1− pc a newly generated
crystal based on the “Averaged Idol” will be used for a replacement.

The algorithm stops after a fixed number of iterations and reports the best solution found, i.e., the last
elitists’ portfolio. The algorithm’s runtime is merely influence by the population size, C, and the maxi-
mum number of different assets included in the portfolio, k, its complexity being O

(
C ·
(
ln(C) + k2

))
.

2.2 Variants

In the course of developing the reported version of the algorithm, we experimented with several modi-
fications and extensions which were eventually turned down for different reasons.

Variants for the modification of portfolios included different ways of changing the weights and exchang-
ing assets. Amongst these were alternative versions for calculating z̃ict which was either distributed
within a constant bandwidth (i.e., with constant Ut = U) or the distribution of which was distorted
according to the Averaged Idol. Additional versions concentrated on the selection of a new asset j
which was either perfectly random or orientated on the covariances σij . All of these variants led to
either lower reliability of the results or increased the runtime significantly without noticeable effect on
the quality of results.

Variants for the evaluation stage included a nonlinear system for generating the amplifying factors, ex-
clusion of the elitists and/or prodigies, and allowing all members of the current population to contribute
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to public knowledge and not just the prodigies. Both elitists and prodigies turned out to significantly
improve the effectiveness of the algorithm in terms of convergence speed. A high number of agents that
contribute their experience to the “Averaged Idol” merely increases runtime without apparent positive
effect. Amongst the ranking system, the linear version of the amplifying factors turned out to be both
simple and effective.

The replacement was found to be most effective when both clones of existing good portfolios and newly
generated portfolios based on successful role models were allowed. To avoid the danger of getting
stuck in a local optimum by “inbreeding” with extremely similar prodigies, we also introduced a third
alternative were a random portfolio was generated independently of the other portfolios. Since the other
portfolios have already passed a number of steps within the optimization process, this new portfolio
was given an extra number of iterations. As turned out, however, this alternative mainly increased the
runtime (because of the extra number of iterations) but had hardly any effect on the result since these
new portfolios almost never made it into the group of the best portfolios with a portfolio structure that
differed significantly from some already existing prodigies’ portfolios.

3 Computational Study

3.1 Data and Parameters

In order to test the algorithm we use two data sets. The first contains the 30 stocks represented in
the German Index DAX30, the second contains 96 stocks of the British FTSE100. In both cases we
used daily quotes over the period July 1998 – December 1999. Based on the corresponding historic
returns we calculated the covariances σij which are used for estimators of future risk. The expected
returns, ri, were generated with a standard Capital Asset Pricing Model (CAPM )–approach3 according
to ri = 0.05 + 0.06 · βi, i.e., with an expected safe return of 5 % and an expected market risk premium
of 6 % and with beta coefficients, βi, coming from the historic returns. The maximal number of assets
to be included in the portfolio was in both cases k ∈ {5; 10; 15; 20}.

We ran some 25,000 experiments with random values for the parameters used in the algorithm. For
each problem, i.e., for each k and data set, the parameters for the runs with the best results and
the worst results were analysed in order to determine favorable values for the parameters. When
regarding efficiency as a combination of high convergence speed and reliable results, we found the
highest efficiency was achieved with a population size of 100 where the π = 12 best portfolios represent
the prodigies and where the number of elitists is ε = 100. Each population had 250 generations to
find the optimum, and in each iteration any of the 100 agents of the population built 4 modified
portfolios the best of which was accepted according to the metropolis function. This implies, that in
each population 250 · 100 · 4 = 100, 000 test portfolios were generated. For the modification of the
weights the bandwidth for z̃ict was [−Ut; +Ut] with U0 = 0.3 and γU = 0.985. The probability that
an asset i with modified weight w′ict = 0 was replaced with some new asset was pr = 0.4. In the
replacement stage the ω = 10 worst agents were replaced with a clone (with probability pc = 0.3) or a
new agent based on the “Averaged Idol” (with probability 1 − pc = 0.7). For the SA part, the initial
temperature was T0 = 750◦, and the cooling parameter was γT = 0.9. Implemented in Delphi 5 with a
900 MHz Pentium III, the runtime was approx. 3 seconds for the smallest problems (k = 5) and approx.
15 seconds for the largest (k = 20).

3.2 Results

The lefthand graph in Figure 1 depicts the results of 944 runs for the case where a portfolio consisting
of k ≤ 10 out of the N = 30 securities represented in the DAX30 is to be selected. The graph on the

3For a detailed presentation of the Capital Asset Pricing Model (CAPM ) see, e.g., [3].
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Figure 1: Results for the DAX30 data set with k = 10 and N = 30 (left) and for the FTSE10 data set
with k = 20 and N = 96 (right)

right depicts the corresponding results of 2,410 runs for selecting k ≤ 20 out of the N = 96 available
FTSE100–stocks. As mentioned earlier, each run comprises 100,000 test portfolios. Note that in the
first case there are

∑10
k=1

(
30
k

)
= 5.3 × 107 different valid combinations of stocks, in the second case

there are
∑20
k=1

(
96
k

)
= 2.9 × 1020 alternatives. For each of these alternatives, of course, the number

of different valid combinations of weights is infinite. We want to emphasize that all the runs with the
final set of parameters are reported and that no results were excluded for poor performance. As can
be seen from the two figures, the algorithm finds highly reliable results. The portfolios form a very
smooth line and there are no significant outliers in the sense that a portfolio has a lower expected return
but a higher volatility than any other portfolio. The portfolios found by the algorithm can therefore
be regarded as members of the so-called Efficient Set , i.e., the theoretical set of optimal portfolios.
Outliers, i.e., inefficient portfolios , would lie below this line.

For both the DAX data set and FTSE data set, we ran the algorithm for k = 5, 10, 15, and 20. The
results are analogous to those reported. We conclude from that the algorithm’s efficiency and reliability
are therefore virtually not influenced by the problem size which depends on the size of the market (as
can be seen from the different sizes of the DAX and the FTSE data sets) and the number of assets to
be selected.

4 Conclusion

In this paper we presented a metaheuristic which combines principles from Simulated Annealing with
Evolutionary Strategies and which uses additional modifications. Having applied this algorithm we find
that it yields highly efficient and reliable results for portfolio selection.
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