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Abstract

High-dimensional integrals are usually solved with Monte Carlo algorithms although
theory suggests that low discrepancy algorithms are sometimes superior. We report
on numerical testing which compares low discrepancy and Monte Carlo algorithms on
the evaluation of financial derivatives. The testing is performed on a Collateralized
Mortgage Obligation (CMO) which is formulated as the computation of ten integrals
of dimension up to 360.

We tested two low discrepancy algorithms (Sobol and Halton) and two randomized
algorithms (classical Monte Carlo and Monte Carlo combined with antithetic variables).
We conclude that for this CMO the Sobol algorithm is always superior to the other
algorithms. We believe that it will be advantageous to use the Sobol algorithm for
many other types of financial derivatives.

Our conclusion regarding the superiority of the Sobol algorithm also holds when a
rather small number of sample points are used, an important case in practice.

We have built a software system called FINDER for computing high dimensional
integrals. Routines for computing Sobol points have been published. However, we
incorporated major improvements in FINDER and we stress that the results reported
here were obtained using this software.

The software system FINDER runs on a network of heterogeneous workstations
under PVM 3.2 (Parallel Virtual Machine). Since workstations are ubiquitous, this is
a cost-effective way to do very large computations fast. The measured speedup is at
least .9N for N workstations, N < 25. The software can also be used to compute high
dimensional integrals on a single workstation.
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1 Introduction

High-dimensional integrals are usually solved with Monte Carlo algorithms. Vast sums are
spent annually on these algorithms.

Theory [21], [43] suggests that low discrepancy algorithms are sometimes superior to
Monte Carlo algorithms. However, a number of researchers, [14], [19], [20], report that
their numerical tests show that this theoretical advantage decreases with increasing dimen-
sion. Furthermore, they report that the theoretical advantage of low discrepancy algorithms
disappears for rather modest values of the dimension, say, d < 30.

We decided to compare the efficacy of low discrepancy and Monte Carlo algorithms on
the valuation of financial derivatives. We use a Collateralized Mortgage Obligation (CMO),
provided to us by Goldman Sachs, with ten bond classes (tranches) which is formulated as
the computation of ten integrals of dimension up to 360. The reasons for choosing this CMO
is that it has fairly high dimension and that each integrand evaluation is very expensive
making it crucial to sample the integrand as few times as possible. We believe that our
conclusions regarding this CMO will hold for many other financial derivatives.

The low discrepancy sample points chosen for our tests are Sobol and Halton points. We
compared the algorithms based on these points with the classical Monte Carlo algorithm and
also with the classical Monte Carlo algorithm combined with antithetic variables. We refer
to the latter as the antithetic variables algorithm. See Section 7 for a discussion of why this
algorithm was tested.

An explanation of our terminology is in order here. Low discrepancy points are sometimes
referred to as quasi-random points. Although in widespread use, we believe the latter term
to be misleading since there is nothing random about these deterministic points. We prefer
to use the terminology low discrepancy or deterministic.

We assume the finance problem has been formulated as an integral over the unit cube in d
dimensions. We have built a software system called FINDER for computing high dimensional
integrals. FINDER runs on a heterogeneous network of workstations under PVM 3.2 (Parallel
Virtual Machine). Since workstations are ubiquitous, this is a cost-effective way to do large
computations fast. Of course, FINDER can also be used to compute high dimensional
integrals on a single workstation. The software system FINDER is available and interested
readers should contact the author.

A routine for generating Sobol points is given in [28]. However, major improvements
have been incorporated in FINDER. We emphasize that the results reported in this paper
were obtained using FINDER. One of the improvements was developing the table of primitive
polynomials and initial direction numbers for dimensions up to 360.

This paper is based on software construction and testing which began in the Fall of 1992.
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Preliminary results were presented to a number of New York City financial houses in the Fall
of 1993 and the Spring of 1994. A January, 1994 article in Scientific American discussed the
theoretical issues and reported that “Preliminary results obtained by testing certain finance
problems suggest the superiority of the deterministic methods in practice.” Further results
were reported at a number of conferences including [24], [38], [39]. An “extended abstract”
of this paper was published in Fall, 1995 [26]. A slightly different version of this paper
appeared as a Columbia University Technical Report in October, 1994.

We summarize our main conclusions regarding the evaluation of this CMO. The conclu-
sions may be divided into three groups.

I. Deterministic and Monte Carlo Algorithms

The Sobol algorithm consistently outperforms the Monte Carlo algorithm. The Sobol
algorithm consistently outperforms the Halton algorithm. In particular,

e The Sobol algorithm converges significantly faster than the Monte Carlo algorithm;

e The convergence of the Sobol algorithm is smoother than the convergence of the Monte
Carlo algorithm. This makes automatic termination easier for the Sobol algorithm;

e Using our standard termination criterion, see Section 6, the Sobol algorithm terminates
2 to 5 times faster than the Monte Carlo algorithm often with smaller error;

e The Monte Carlo algorithm is sensitive to the initial seed.

II. Sobol, Monte Carlo, and Antithetic Variables Algorithms
The Sobol algorithm consistently outperforms the antithetic variables algorithm, which in
turn, consistently outperforms the Monte Carlo algorithm. In particular,

e These conclusions also hold when a rather small number of sample points are used, an
important case in practice. For example, for 4000 sample points, the Sobol algorithm
running on a single Sun-4 workstation achieves accuracies within range from one part
in a thousand to one part in a million, depending on the tranche, within a couple of
minutes;

e Statistical analysis on the small sample case further strengthens the case for the Sobol
algorithm over the antithetic variables algorithm. For example, to achieve similar
performances with confidence level 95%, the antithetic variables algorithm needs from
7 to 79 times more sample points than the Sobol algorithm, depending on the tranche.
In a similar comparison, the Monte Carlo algorithm needs from 27 to 607 times more
sample points than the Sobol algorithm depending on the tranche. These speedups are
measured conservatively, see Section 9;



e Statistical analysis for a large number of sample points (1,000,000 points) shows that
the superiority of the Sobol algorithm is greater than for a small number of points.
For example, to achieve similar performances with confidence level 95%, the antithetic
variables algorithm needs from 16 to 230 times more sample points than the Sobol
algorithm, depending on the tranche. In a similar comparison, the Monte Carlo al-
gorithm needs from 110 to 1769 times more sample points than the Sobol algorithm
depending on the tranche. These speedups are measured conservatively, see Section 9;

e The antithetic variables algorithm is sensitive to the initial seed. However, convergence
of the antithetic variables algorithm is less jagged than convergence of the Monte Carlo
algorithm.

III. Network of Workstations All the algorithms benefit by being run on a network of
workstations. In particular,

e For N workstations, the measured speedup is at least 0.9N, where N < 25;

e A substantial computation which took seven hours on a Sun-4 workstation took twenty
minutes on the network of 25 workstations.

We emphasize that we do not claim that the Sobol algorithm is always superior to the
Monte Carlo algorithm. We do not even claim that it is always superior for financial deriva-
tives. After all, the test results reported here are only for one particular CMO. However,
we do believe it will be advantageous to use the Sobol algorithm for many other types of
financial derivatives.

2 The Monte Carlo Algorithm

In this section, we give a brief discussion of the theory underlying the Monte Carlo algorithm
for the problem of multivariate integration. For more details, see for example, [11], [12], [15],
and [34].

We now present the classical Monte Carlo algorithm. For brevity, we refer to it as the
Monte Carlo algorithm. Let ¢1,...,¢, be n randomly selected points which are independent
and uniformly distributed over D = [0, 1]%, the d dimensional unit cube. Consider a function
f from the space Ly(D) of Ly-integrable functions. The problem is to approximately compute

1) = [ fla)de
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using function evaluations at randomly chosen points. The classical Monte Carlo algorithm
is given by
1 k13
1P~ UL = UalFita o ) = 37 (1) (1
=1
The main idea underlying the Monte Carlo algorithm for multivariate integration is to replace
a continuous average by a discrete average over randomly selected points.
The expected value of the estimate U, (f;11,...,t,) as a function of the random variables
tl,tg,. . .,tn is

EWU.(f;t1,...,tn) = 1(f).
The expected error of the Monte Carlo algorithm for a function f is defined by

B = () 00 - i)

It is well known that

En(f) =

where the variance a?(f) of f is defined as

() = [ () = 1)) dt = 1(£%) = (D)

Clearly, by reducing the variance of the integrand the expected error would also decrease.
In fact, this is the main idea underlying the various variance reduction techniques which are
often used in combination with the Monte Carlo algorithm. Examples of variance reduction
techniques are importance sampling, control variates, antithetic variables, see for example
[15]. Antithetic variables will be discussed in Section 7.

Let B(Ly(D)) denote the unit ball of Ly(D). The expected error of the Monte Carlo algo-
rithm with respect to the class B(Ly(D)) is measured for the worst function f in B(Lz(D)),

e MUB(Ly(D) = sup  En(f).
FEB(Ly(D))

It can be easily concluded that

e MC(B(Ly(D)) = n~Y2, (2)

n

Since the rate of convergence is independent of d and the Monte Carlo algorithm is ap-
plicable to a very broad class of integrands, its advantages for high dimensional integration
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are clear. Nevertheless, the Monte Carlo algorithm has several serious deficiencies, see for
example, [21] and [36]. We mention just three of them here. Even though the rate of conver-
gence is independent of the dimension, it is quite slow. Furthermore, there are fundamental
philosophical and practical problems with generating independent random points; instead,
pseudorandom numbers are used, see [16] and [41]. Finally, the Monte Carlo algorithm pro-
vides only probabilistic error bounds, which is not a desirable guarantee for problems where
highly reliable results are needed.

3 Low Discrepancy Deterministic Algorithms

In an attempt to avoid the deficiencies of the Monte Carlo algorithm, many deterministic
algorithms have been proposed for computing high dimensional integrals for functions be-
longing to various subsets of Ly(D), see e.g. [21], [22], [40], [43], [23], and [37]. One class
of such deterministic algorithms is based on low discrepancy sequences. First, we define
discrepancy, which is a measure of deviation from uniformity of a sequence of points in D.
Then, very briefly, we give the theoretical basis of the low discrepancy sequences to be used
as sample points for computing multivariate integrals. For more detailed description and
treatment of these results, see [21].

For t = [t1,...,t4) € D, define [0,1) = [0,11) x --- x [0,%4). Let x[o,¢) be the characteristic
(indicator) function of [0,). For z1,...,z, € D, define

1 n
Ru(t;z1,. .y 20) = = > Xy (zk) — titz -+ ta.

=1

The Ly (or Le) discrepancy of zq,. .., z,, is defined as the Ly (or Ly ) norm of the function
Ru(-521,.. ., 2), lee,

1/2
IR 20,y 2)s = (/DRi(t;zl,...,zn) dt) ,

|Rn(-521,- s 2n)|le = sup|Ru(t;z1,. .., 20)]-
teD

Roth, [29] and [30], proves that

inf ||Ru(-521,..,20)|l2 = ©(n" ' (log n)(d_l)p). (3)

Z14y..92n

Of special interest for numerical integration are infinite low discrepancy sequences {zj}
in which the definition of z; does not depend on the specific value of the number of points n.



Examples of such infinite sequences are the Halton [9] and Sobol [33] sequences. For the
reader’s convenience, we give a short description of both these sequences later in this section.
The following bounds hold for the Halton and the Sobol sequences
d
B2l < IRzl = 0 (521 (1
This is the best upper bound known and it is widely believed that it is sharp for these
sequences, see [21].

We stress that the constants in the bounds (3) and (4) depend on the dimension d and
good estimates of these constants are not known. Bounds with known constants and n
independent of d are studied in [42] and [44].

Sequences satisfying the upper bound in (4) are known as low discrepancy sequences or
quasi-random sequences. We will refer to them as low discrepancy sequences or deterministic
sequences.

Clearly, the idea behind the low discrepancy sequences is for any rectangular [0,1) the
fraction of the points within [0,%) to be as “close” as possible to its volume. That way, the
low discrepancy sequences cover the unit cube as “uniformly” as possible by reducing gaps
and clustering of points. This idea is illustrated in Figure 1 and Figure 2.

We now state the theoretical bases for the use of low discrepancy sequences as sample
points for multivariate integration. Let V(f) < oo be the variation of f on D in the sense of
Hardy and Krause, see [21], and let {2z} be a low discrepancy sequence. The Koksma-Hlawka
inequality guarantees that

1) = =30 )] < VU IBale izl (5)
k=1
Upper bounds in terms of Ly discrepancy have also been proven, see [21]. Therefore, (4) and
(5) provide a worst case assurance for the use of low discrepancy sequences as sample points
for numerical integration of functions with bounded variation in the sense of Hardy and
Krause. Furthermore, we stress that the deterministic algorithms, based on low discrepancy
sequences, have better rates of convergence than the Monte Carlo algorithm.

In addition, low discrepancy sequences also have good properties in the average case
setting. Indeed, let ' = C; be the class of real continuous functions defined on D and
equipped with the classical Wiener sheet measure w. That is, w is Gaussian with mean zero
and covariance kernel R,, defined as

Ruft,o) & [ f@) f(w)ldf) = min(t,2) < ] min(t;, ;).

Ca i
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Figure 2: 256 Sobol points in the unit square
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where t = (t1,...,tq), © = (21,...,24) for t,z € D.
Define
.Ik:l—Zk, k=1,2,...,

where {z;} is a low discrepancy sequence. We approximate the integral of f from C; by the
arithmetic mean of its values at xy,

10 = [ F0dt~ U ()= -3 ), ¥feCa

n

Wozniakowski [43] relates the average case error of U, (f) with the Ly discrepancy,

L) = Uudh) = [ Rtz z)dt (6)

Thus, (3), (4), and (6) provide an average case assurance for the use of the sequence {z}
as a set of sample points for numerical integration of the functions in Cy equipped with the
classical Wiener sheet measure. Using the identity X[o4)(2x) = X(1-t1](%x) and Proposition
2.4 in [21], we conclude that if {z;} is a low discrepancy sequence then {z;} is also a low
discrepancy sequence.

3.1 Halton Points

We give a short description of the Halton low discrepancy sequence.
Let py,p2,...,pq be the first d prime numbers. Any integer & > 0 can be uniquely
represented as k = El[fgk] aipé with integers a; € [0, p; — 1]. The radical inverse function ¢,

is defined as
[log k]

Gp, (k) = > am; ™" (7)

1=0

The Halton d-dimensional points are defined as

2= (6 (), @k, GpuR)), B0,

3.2 Sobol Points

We give a short description of the Sobol low discrepancy sequence.
Assume first that d = 1. A one-dimensional Sobol sequence is generated as follows. For
i =1,2,...,w, let v; = m;/2' be a sequence of binary fractions with w bits after the binary
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point, where 0 < m; < 2 are odd integers. The numbers v; are called direction numbers.
Assume for a moment that they are already generated; we will discuss their generation later.
In Sobol’s original algorithm, a one-dimensional Sobol sequence is generated by

T = bivy B byva B -+ D byvy, k>0

where k = Eg)gk] b;2! is the binary representation of k and @ denotes a bit-by-bit exclusive-
or operation. For example, k£ =3 is 11 in base 2. If v; = 0.1 and vy = 0.11 then

bl’Ul (S, bQ‘UQ =0.1 S, 0.11 = 0.01.

Antonov and Saleev [2] suggest a shuffling of the original Sobol sequence which preserves
good convergence properties and which can be generated much faster. This version of the
Sobol sequence is used here.

The sequence of direction numbers v; is generated by a primitive polynomial, see [16]
and [33], with coeflicients in the field Z, with elements {0,1}. Consider, for example, the
primitive polynomial

P(z)=2a" + a4+ ta,qx+1

of degree n in Z[x]. Then the direction numbers are obtained from the following recurrence
formula

U = @101 B agVig B D An1Viont1 D Vien B (vien/27), L > n,

where the last term v;_, is shifted right n places. The initial numbers vy = my/2,...,v, =
m, /2" are such that m; is odd and 0 < m; < 2! for 7 = 1,2,...,n.

Consider now an arbitrary d > 1. Let Py, P, ..., P; be d primitive polynomials in Z;[z].
Denote by {z%}°, the sequence of one-dimensional Sobol points generated by the polynomial
P;. Then the sequence of d-dimensional Sobol points is defined as

xp = (zh, 2, ..., h).

4 Software System for Computing High Dimensional
Integrals

4.1 Algorithms

The theory presented in the previous sections suggests that the low discrepancy deterministic
algorithms provide an interesting alternative to the Monte Carlo algorithm for computing

12



high dimensional integrals. We have developed and tested a distributed software system
for computing multivariate integrals on a network of workstations. The deterministic algo-
rithms and the Monte Carlo algorithm are implemented. The software utilizes the following
sequences of sample points:

e Halton points;
e Sobol points;
e Uniformly distributed random points.

The user can choose the sequence of sample points from a menu. The software is written
in a modular way so other kinds of deterministic and random number generators can be
easily added. One or several multivariate functions defined over the unit cube of up to 360
variables can be integrated simultaneously. The number of variables could be extended as
well.

A routine for generating Sobol points is given in [28]. However, we have made major
improvements and we stress that the results reported in this paper were obtained using
FINDER and not the routine in [28]. One of the improvements was developing the table of
primitive polynomials and initial direction numbers for dimensions up to 360.

The software uses various kinds of random number generators. More specifically, the
random number generators ranl and ran2 from the first edition of Numerical Recipes [27],
and RAN1 and RAN2 from the second edition of Numerical Recipes [28] are used because
of their wide availability and popularity. All of the above random number generators are
based on linear congruential generators with some additional features. For more details on
these random number generators we refer to [27] and [28].

4.2 Systems

Since workstation clusters and networks provide cost-effective means to perform large-scale
computation, we have built and debugged a software system under PVM 3.2 (Parallel Virtual
Machine) for computing multivariate integrals. This system runs on a heterogeneous network
of machines. PVM is a software package that allows a network of heterogeneous Unix
computers to be used as a single large parallel computer. Thus large computational problems
can be solved by using the aggregate power of many computers.

A master/slave model is used as the programming paradigm for computing multivariate
integrals. In this model, the master program spawns and directs some number of slave
processes. Each of the slave processes generates a sequence of sample points specified by
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the master and evaluates the integrand at those points. A partial sum of integrand values
is returned to the master by each of the slave processes. The master combines partial sums
as specified by an algorithm, computes an approximate value of the integral, and checks a
termination criterion. If the termination criterion is not satisfied, the master spawns a new
round of computations. This process continues until the termination criterion is satisfied
or some prespecified upper bound of the number of sample points is reached. At the end,
the master returns the final result of computation and timing information. In addition, the
master process keeps information about each spawned process. If some host dies, the master
reallocates its job to some other host.

In a multiuser network environment the load balancing method can be one of the most
important factors for improving the performance. A dynamic load balancing method is used.
Namely, the Pool of Tasks paradigm is especially suited for a master/slave program. In the
Pool of Tasks method the master program creates and holds the “pool” and sends out tasks
to slave programs as they become idle. The fact that no communication is required between
slave programs and the only communication is to the master makes our integration problem
suitable for the Pool of Tasks paradigm.

5 Finance (CMO) Problem

We now consider a finance problem which is a typical Collateralized Mortgage Obligation
(CMO). A CMO consists of several bond classes, commonly referred to as tranches, which
derive their cash flows from an underlying pool of mortgages. The cash flows received from
the pool of mortgages are divided and distributed to each of the tranches according to a
set of prespecified rules. The cash flows consist of interest and repayment of the principal.
The technique of distributing the cash flows transfers the prepayment risk among different
tranches. This results in financial instruments with varying characteristics which might be
more suitable to the needs and expectations of investors. For more details on CMOs, we
refer to [5]. We stress that the amount of obtained cash flows will depend upon the future
level of interest rates. Our problem is to estimate the expected value of the sum of present
values of future cash flows for each of the tranches.

We now give some of the details related to the studied CMO and the way it is reduced to
the problem of multivariate integration. The CMO® consists of ten tranches. Denote them
by A, B, C, D, E, G, H, J, R, Z. Throughout this section, we describe results on tranche A in
more details. Results for other tranches are similar unless stated explicitly. The underlying
pool of mortgages has a thirty-year maturity and cash flows are obtained monthly. This

1t is labeled as “Fannie Mae REMIC Trust 1989-237.
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implies 360 cash flows. The monthly cash flows are divided and distributed according to
some prespecified rules. The actual rules for distribution are rather complicated and are

given in details in the prospectus describing the financial product.
For 1 < k < 360, denote by

C' — the monthly payment on the underlying pool of mortgages;
1ty — the appropriate interest rate in month &;
wr — the percentage prepaying in month k;

aseo—k+1 — the remaining annuity after month k.

Recall that the remaining annuity ay is given by
ar=1+vo+ - +ovi k=1,2,...,360,

with vg = 1/(1 +1¢) and ¢ the current monthly interest rate. In the notation above, C' and
a3eo—k+1 are constants; ¢, and wy are stochastic variables to be determined below.
We now describe the interest rate model. Assume that the interest rate 7j is of the form

iy = Koeb* iy = K{ig et T,

where {£,}7% are independent normally distributed random variables with mean 0 and
variance 0%, and Kj is a given constant. In our case o* = 0.0004 is chosen.
Suppose that the prepayment model wy, as a function of ¢, is computed as

wr = wr(éy,..., &) = K1 + Kyarctan( K3zt + Ky)
= Ky 4 Kyarctan(Ks K ig 2T 4 K),

where K, Ky, K3, K4 are given constants.

The cash flow in month k, &k =1,2,...,360, is

Mk = Mk(fl;vfk)
= Cl=wi(&))- (1= e (Erseees Emn)) (L= wilry -, €0) + wilErs -, E6)assoiin).

This cash flow is distributed to the tranches according to the rules of the CMO under
consideration. Let G.r(&,. .., &) be the portion of the cash flow M} for month k directed
to the tranche T'. The form of the function Gy,r is very complex. Here, it suffices to say that
it is a continuous function which is a composition of min functions and smooth functions.
By min function we mean a function which is the minimum of two functions.
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To find the present value of the tranche T' for month k, Gr.r (&1, ..., &) has to be multi-
plied by the discount factor

uk(fl, - 7&—1) = ’00‘01(51) : "'Uk—l(fl, - 7&—1)7

with
(& &) ! ! 1 =1,2 359
vi(ér,...,&) = , = — , ;7 =1,2,...,359.
7o I ) L Kigetit ot g
Summing up the present values for every month £, £ =1,2,...,360, for tranche T" will give

us the present value PVp,

360

PVT(&, cen 75360) = Z Gk;T(fb s afk)uk(flv s afk—l)-
k=1

We want to compute the expected value E(PVy) = E(PVr(&1,...,E360)). By change of
variables, it is easy to see that

E(PVT) = / PVT(‘yl(h); cee ’3/360(1’360)) dxy - - - dxseo,

(0,160

where y; = y;(x;) is implicitly given by

1 ¢ 2
T, = /y e_t /(QU)dt. (8)

270 J—o

Therefore, our problem is reduced to a problem of computing ten multivariate integrals over
the 360-dimensional unit cube. We stress that after generating a point (z1,...,x36) in the
360-dimensional unit cube, the point (y1,...,ys60) has to be computed by finding the value
of the inverse normal cumulative distribution function at each z;, k =1,2,...,360. We use
software available through NETLIB to compute the points (y1,...,¥yse0). Then the function
values PVy(yi,...,yse0) are computed for all tranches 7'

We now discuss some of the smoothness properties of the integrand PVy, where T is one
of the tranches. Since the change of variables in (8) is based on smooth functions we may
restrict our discussion to PVp as a function of yy,..., yse. Recall that

360
PVT(‘yh s 7y360) = Z Gk;T(yb s ayk)uk(ylv s ayk—l)-
k=1
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Clearly, uy, is a smooth function. As mentioned before, Gi.r is a composition of min functions
and smooth functions. That is why we believe that the function PV has finite variation in
the sense of Hardy and Krause and, that is why we decided to use low discrepancy sequences
for these type of integrands. Of course, it would be desirable to have a good bound on the
variation of PVp. Unfortunately, due to the complex form of PVy, this is a very difficult
task.

As reported in the Introduction, it is widely believed that the theoretical advantage of low
discrepancy sequences degrades with increase of dimension and low discrepancy sequences
are effective, in general, only for d < 30. Although the CMO problem is apparently of
dimension 360, some of the tranches are of lower dimension. To understand the performance
of the different algorithms for the CMO problem it is important to know the dimensions of
the various tranches.

The integrand PVy of tranche T' depends on the cash flows G.r. The cash flow Gy, has
an important property. If the tranche 7' is retired at month kp, i.e., the whole principal is
paid off, then Gy.r is zero for month k > kr. More precisely,

Grrl(br, .. &) =0 Vk>ky = kp(&r, ... &)

with &, ..., & corresponding to a particular interest rate scenario.

We checked computationally that kr is typically smaller than 360. We generated n =
3,000,000 random sample points and determined the maximum kg for each tranche T.
These numbers are reported in Table 1. As we see, the dimension of only one tranche is 360.
However, for the other tranches, the dimension is still high.

The concept of the dimension of a tranche can be further relaxed. Intuitively, if the
dependence of PVy is negligible on the variables xjyq, 212, .., 2360 then only the first &
variables zi,x,,...,x; contribute substantially to the integral of PVp. This concept of
effective dimension can be defined rigorously as follows.

Let f be a function with domain [0, 1]¢ and let ¢ > 0. The effective dimension K () of f
is the smallest integer k € [1,d] such that

‘/[Ol]kf(:cl,...,:l:k,(),...,O)d:l:l---d:(:k—/ flz)dz

[0,1]¢

We apply this definition of effective dimension to the ten tranches of the CMO problem.
Clearly, the effective dimension is a function of e. What value of ¢ should we choose? In
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Tranche | Maximum of k¢
A 189
B 250
C 278
D 298
E 309
G 77
H 91
J 118
R 360
Z 167

Table 1: The maximum of the numbers k7 obtained by generating 3,000,000 random sample
points for each tranche of the CMO problem

practice, the CMO problem does not have to be solved with high accuracy, see also the
discussion in Section 8, and so we choose ¢ = 0.001. We checked computationally that the
values of the integrals of all tranches are about «10® with a € [2,42]. Hence by taking
¢ = 0.001 we introduce an absolute error which is on the order of several thousand dollars.

We estimate K (e) for ¢ = 0.001, where K (e) denotes the effective dimension of tranche
T. To compute Kr(e) we need a fairly accurate approximation of the integral I[(PVy) =
Jioappeo PVr(x)de. We approximate /(P Vr) by using 20,000,000 sample points as explained
in Section 8. Using these results we approximately compute the effective dimensions for each
of the tranches. The results are summarized in Table 2. As we see, the effective dimension,
although smaller, is still high for most of the tranches.

6 Comparison of the Deterministic and Monte Carlo
algorithms

We now present the results of extensive testing of the deterministic and Monte Carlo algo-
rithms for the CMO problem. For the reader’s convenience, the results are summarized in a
number of graphs.

Figure 3 shows the results for tranche A of Sobol, Halton, and Monte Carlo runs with
two randomly chosen initial seeds. The pseudorandom generator RAN2 from [28] is used to
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Tranche | Kp(e)
131
175
212
239
261
42
63
84
338
114

NT-sTZDOQO@Eoaow>

Table 2: The approximate values of Kp(e) for ¢ = 0.001

generate random sample points for the Monte Carlo runs. Figure 3 exhibits behavior that
is common in all our comparisons of the Sobol algorithm with the Monte Carlo algorithm.
For the Halton algorithm see the discussion at the end of this section.

e The Monte Carlo algorithm is sensitive to the initial seed;

e The deterministic algorithms, especially the Sobol algorithm, converge significantly
faster than the Monte Carlo algorithm;

e The convergence of the deterministic algorithms, especially of the Sobol algorithm, is
smoother than the convergence of the Monte Carlo algorithm. This makes automatic
termination easier for the Sobol algorithm; see the discussion below;

e The Sobol algorithm outperforms the Halton algorithm.

Figure 4 shows the same Sobol and Halton runs but a different random number generator,
namely ranl from [27], is used to generate four Monte Carlo runs using four randomly
chosen initial seeds. The plot again exhibits sensitivity of the Monte Carlo algorithm to the
initial seed. The plot also indicates that there are some problems with this random number
generator since the Monte Carlo results seem to lie on horizontal lines when the number
of sample points exceeds 300,000 and it seems unlikely that they will converge to the same
value. This claim is also supported by the fact that the same effect has been observed for
sixteen additional Monte Carlo runs. We assume that is why ranl has been replaced by a
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Figure 3: Sobol and Halton runs for tranche A and two Monte Carlo runs using RAN2
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Figure 4: Sobol and Halton runs for tranche A and four Monte Carlo runs using ranl

different random number generator in [28]. Figure 4 is included to show that the results can
be affected by the poor performance of the random number generator.

Figure 5 plots the same Sobol and Halton runs versus the arithmetic mean of twenty
Monte Carlo runs using RAN2 from [28]. We stress that the number of sample points on the
x-axis is correct only for the deterministic algorithms. The actual number of sample points
for the averaged Monte Carlo graph is twenty times the number of sample points on the
x-axis. The results of the deterministic algorithms and the averaged Monte Carlo result are
approximately the same. We thus conclude that to achieve similar performances, we have
to take about 20 times more random than deterministic sample points.

In Figure 6, an automatic termination criterion is applied to Sobol, Halton, and three
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Figure 5: Sobol and Halton runs for tranche A and an average of twenty Monte Carlo

using RAN2
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Monte Carlo runs using RAN2 from [28] as the pseudorandom generator. We choose a
standard automatic termination criterion. Namely, when two consecutive differences between
consecutive approximations using 10,000z, ¢ = 1,2,...,100, sample points become less
than some threshold value for all of the tranches of the CMO, the computational process is
terminated. With the threshold value set at 250, the Sobol run terminates at 160,000 sample
points, the Halton run terminates at 700,000 sample points, and the three Monte Carlo runs
terminate at 410,000, 430,000, and 780,000 sample points, respectively. Hence, the Sobol
run terminates 2 to 5 times faster than the Monte Carlo runs.

We also stress that even though the Sobol algorithm terminates faster, the result is more
accurate than two of the results achieved by the Monte Carlo algorithm. In Section 8, we
show that the value of the integral for tranche A by using 20,000,000 sample points is about
m = 14,865,801. Using this value of m, we compute the absolute error for each of the results
at the point of termination:

e The error of 160,000 Sobol sample points is 379;

e The error of 700,000 Halton sample points is 69;

The error of 410,000 random sample points with initial seed 1 is 1,298;
e The error of 430,000 random sample points with initial seed 1147902781 is 2,177;
e The error of 780,000 random sample points with initial seed 1508029952 is 180.

Automatic termination criteria are often used in computational practice. It is of interest
to study the relation between the threshold value and the actual error of approximation. See
Paskov [25] for the approximation of linear operators in the average case setting assuming
that arbitrary linear continuous functionals can be computed. It is proved that standard
termination criteria work well. The corresponding problem for approximation of linear op-
erators in the average case setting with information consisting only of function values is still
open.

We stress that the conclusions observed in this section for the Monte Carlo and Sobol
algorithms hold also for the rest of the tranches. Although, the Halton algorithm performs
better than the Monte Carlo algorithm for tranche A and a few other tranches it does not
perform well for most of them. Therefore our emphasis for the remainder of this section will
be on Sobol rather than Halton points.
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7 Antithetic Variables

As already mentioned in Section 2, the expected error of the classical Monte Carlo algorithm
depends on the variance of the integrand. Therefore by reducing the variance of the inte-
grand the expected error would also decrease. Various variance reduction techniques such as
importance sampling, control variates, antithetic variables and others, see for example [15],
are often used with the classical Monte Carlo algorithm.

For the low discrepancy algorithms, the error bound depends on the variation of the
integrand, see Section 3. Therefore the error bound will be decreased by reducing of the
variation. Reducing the variation of the integrand has not been studied as extensively as
reducing the variance. See, however, [4], [17], [20], and [36]. This is a major area for further
research.

An important advantage of the classical Monte Carlo algorithm and of the deterministic
algorithms studied here, is that they can be utilized very generally. This is important in a
number of situations:

o If a financial house has a book with a wide variety of derivatives, it is advantageous to
use algorithms which do not need to be tuned to a particular derivative;

o If a new derivative has to be priced, then there is no immediate opportunity to tailor
a variance reduction technique to a particular integrand.

Although variance reduction techniques can be very powerful, they can require consider-
able analysis before being applied. We will therefore limit ourselves here to just one variance
reduction technique; antithetic variables. The advantage of antithetic variables is that it
can be easily utilized. Tests reveal that it is superior to the classical Monte Carlo algorithm
for our CMO problem. We emphasize that antithetic variables is not a palliative; it can be
inferior to the classical Monte Carlo algorithm.

For brevity, we refer to the antithetic variables variance reduction technique combined
with the Monte Carlo algorithm as the antithetic variables algorithm. This algorithm is
based on the identity

1
/Df(:zz)d;v = /Dg(:c)d:zz, where g(z) = 3 (f(x)+ f(1 —a)) for f € L(D).
Clearly, if the variance a*(g) of ¢ is much smaller than the variance o?(f) of f then the
Monte Carlo algorithm for ¢ will have much smaller expected error.
We must, of course, remember that the cost of one evaluation of ¢ is equal to the cost of
two function evaluations of f. Hence, the antithetic variables algorithm is preferable to the
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Tranche r

2.82
2.78
3.09
3.61
4.70
2.80
2.81
3.14
1.55
2.50

N TZToQEoDOw>

Table 3: The ratios r for the ten tranches of the CMO

Monte Carlo algorithm only if the reduction of the variance is by at least a factor of two. In
general, let
o)

V2a(g)
Then the expected error of the antithetic variables algorithm is r-times smaller than the

expected error of the Monte Carlo algorithm. Furthermore, the cost of both algorithms is
about the same. Since r can be smaller than one for some functions, the antithetic variables

variance reduction technique, although simple to use, does not work in general and should
be used with care, see also [15].

We tested the antithetic variables algorithm for the CMO problem with the ten tranches.
Let fr be the integrand for tranche 7. We approximately computed o(fr), o(gr), and
rp = O'(fT)/(\/j o(gr)) for all tranches T'. The results for the ratios ry are given in Table 3.
Hence, the antithetic variables algorithm has at least 1.55 and at most 4.70 smaller expected
error than the Monte Carlo algorithm for the ten tranches of the CMO. Therefore the
antithetic variables algorithm works better than the Monte Carlo algorithm for the CMO
problem.

We also tested the antithetic variables technique combined with Sobol points for the
CMO problem. Since it did not perform as well as the Sobol algorithm we omit the results.

We now present graphs of the results obtained for the deterministic and antithetic vari-
ables algorithms for the CMO problem.

Figure 7 is analogous to Figure 3 in Section 6. It shows the results of Sobol, Halton, and
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Figure 7: Sobol and Halton runs for tranche A and two antithetic variables runs using RAN2

antithetic variables runs with two randomly chosen initial seeds. Again, Figure 7 exhibits
the sensitivity of the antithetic variables algorithm to the initial seed. However, as it should
be expected the antithetic variables algorithm works better than the Monte Carlo algorithm.
That is why, the spread and the jaggedness of antithetic variables runs in Figure 7 are smaller
than the corresponding ones for Monte Carlo runs in Figure 3.

Figure 8 plots the same Sobol and Halton runs versus the arithmetic mean of twenty
antithetic variables runs using RAN2 from [28]. We stress that the number of sample points
on the x-axis is correct only for the deterministic algorithms. The actual number of sample
points for the averaged antithetic variables graph is twenty times the number of sample
points on the x-axis. Clearly, the Sobol and the averaged antithetic variables graphs are
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very close after 450,000 points.

8 Small Number of Sample Points

In this section we compare the performance of the deterministic algorithms with the Monte
Carlo and antithetic variables algorithms for a small number of sample points. Results for a
small number of points are sometimes of special importance for people who evaluate CMOs
and other derivative products. They need algorithms which can evaluate a derivative in a
matter of minutes. Rather low accuracy, on the order of 1072 to 107%, is often sufficient. The
integrands are complicated and computationally expensive. Furthermore, many may have
to be evaluated on a daily basis with limited computational resources, such as workstations.
We must, therefore, limit ourselves to only a small number of sample points.

In this section, by a small number of points we mean 4000 sample points. As we shall see,
this still leads to reasonable results and takes less than a couple of minutes of workstation
CPU time. We believe that this sample size may yield comparable results for other mortgage-
backed securities and interest rate derivatives.

We drop the Halton algorithm from consideration in this section since it is outperformed
by both the Monte Carlo and antithetic variables algorithms for 4000 sample points.

From now on, let f be the integrand for tranche A and let

(flz)+ f(1—=2)), for x € D.

N | —

g(z) =

Consider the twenty results

Usie () Unge(£). - Unie (F) (9)
obtained by the Monte Carlo algorithm and the twenty results
Ui (9), U (9).--.. UV (9) (10)

obtained by the antithetic variables algorithm with different initial seeds, each using 4,000
f function evaluations. For 4000 Sobol points, we obtained

Us(f) = 14,868, 261. (11)

To compute the relative errors of all presented results, we need to know the true or
almost true value I(f) of the integral. In Section 7 we showed that the antithetic variables
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algorithm works better than the Monte Carlo algorithm for the CMO problem. That is why
it is reasonable to compute an approximation m to I( f) using 20,000,000 function evaluations
with the antithetic variables algorithm. For tranche A, we obtain

I(f) ~ m = 14,865, 801.

We now compute the relative error for each of the results in (9), (10), and (11). In
Table 4, we indicate how many times out of 20 the Sobol algorithm has a smaller relative
error than the antithetic variables algorithm. As we see, the Sobol algorithm wins for 8 of the
tranches, it ties for 1, and it loses for 1. However, for 5 of the tranches the Sobol algorithm
wins decisively. In total, the Sobol algorithm wins 139 times and loses 61 times. Therefore,
the antithetic variables algorithm sometimes performs better than the Sobol algorithm but
in most cases it does not.

In Table 5 we report the smallest and the largest relative errors of the twenty antithetic
variables runs in (10). The last column of Table 5 reports the relative errors for the Sobol
algorithm.

Note that each of these runs performs very well since the relative error is always at most
0.005. The Sobol algorithm performs even better; it achieves accuracies within range from
one part in a thousand to one part in a million, depending on the tranche. We add that
it takes approximately 103 seconds to compute the Sobol results and about 113 seconds
to compute the antithetic variables results for the ten tranches; each algorithm uses 4000
function evaluations and it is run on a Sun-4/630-M140 workstation.

The results of comparison between the Monte Carlo and the Sobol algorithms are summa-
rized in Table 6 and Table 7. As it can be expected, the performance of the Sobol algorithm
versus the Monte Carlo algorithm is even better than the performance of the Sobol algorithm
versus the antithetic variables algorithm. In this case, the Sobol algorithm wins decisively
for all tranches. In total, the Sobol algorithm wins 177 times and loses 23 times.

9 Statistical Analysis

In this section, we perform statistical analysis of the Monte Carlo and antithetic variables
algorithms for a small number of points. We also compare these two randomized algorithms
with the Sobol algorithm.

Again, we study tranche A. Consider the one thousand results
Usie(D:Ukie (D - U™ () (12)
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Table 4: Number of “wins” of the antithetic variables algorithm and the Sobol algorithm

Tranche | Antithetic variables | Sobol
A 9 11
B 1 19
C 6 14
D 10 10
E 11 9
G 2 18
H 3 17
J 2 18
R 8 12
Z 9 11

Tranche | The smallest error | The largest error | Sobol error
A 9.850831e-06 1.078310e-03 1.654482e-04
B 1.684136e-06 8.965597e-04 1.766718e-06
C 2.351182e-06 1.017674e-03 2.154940e-04
D 3.762572e-06 8.231360e-04 2.626482e-04
E 2.111560e-05 5.663271e-04 2.243416e-04
G 1.179616e-06 1.677086e-04 7.305784e-06
H 2.368361e-06 6.108946e-04 3.811441e-05
J 6.517283e-06 7.988188e-04 3.172316e-05
R 3.910856e-05 4.748614e-03 1.179118e-03
Z 1.456121e-05 1.979723e-03 3.784033e-04

Table 5: The smallest and the largest relative error of 20 antithetic variables results and the
relative error of the Sobol result each using 4000 sample points
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Table 6: Number of “wins” of the Monte Carlo algorithm and the Sobol algorithm

Tranche | Monte Carlo | Sobol

NT-TmoOEmoaws

3 17
20
17
17
18
20
20
20
12
16

00 OO ON WWo

e

Tranche

The smallest error

The largest error

Sobol error

NTsTDoQEoOOQwm»

3.339877e-05
1.037307e-04
3.329284e-05
1.099033e-04
7.673315e-05
3.094756e-05
9.123779e-05
5.152820e-05
3.564157e-05
5.896356e-05

2.633738e-03
3.040330e-03
3.341837e-03
3.536105e-03
3.665118e-03
5.107036e-04
1.454661e-03
1.768061e-03
9.429284e-03
3.749949¢-03

1.654482e-04
1.766718e-06
2.154940e-04
2.626482e-04
2.243416e-04
7.305784e-06
3.811441e-05
3.172316e-05
1.179118e-03
3.784033e-04

Table 7: The smallest and the largest relative error of 20 Monte Carlo results and the relative

error of the Sobol result each using 4000 sample points
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obtained by the Monte Carlo algorithm and the one thousand results
U (9), Ui (9), - U™ () (13)
obtained by the antithetic variables algorithm with different initial seeds, each using 4,000

evaluations of f. Let
| 1000

(i)
= E U = 14,864, 881
mpyrc 1000 £ A4C(fj , 364, 831,

1000

, UL (g) = 14,865,749
Al 10002A‘ T

be the sample means, and let

1 1000 )
SMe = oo (UD(f) — mare)? = 216,929,148,
=1
1 1000 )
sav = —— > (U9(g) — may)? = 37,331, 468
999 =

be the sample variances of these one thousand Monte Carlo and antithetic variables results,
respectively.

According to the Central Limit Theorem, see e.g. [15], the distributions of U,(f) and
U.(g) are normal for n — oo with the same mean [ f(z)dz = [p g(x)dx and variances
a*(f)/n and o*(g)/n, respectively. To check how far we differ from the normal distribution
we plot the density functions of these one thousand results, see Fig. 9 and Fig. 10, by using
the statistical package S-Plus. We conclude that these are very good approximations of the
normal distribution.

Further statistical analysis require the knowledge of the true value m of the integral. In
Section 8, we showed that it is reasonable to assume that m ~ 14,865,801. We seek the
number of antithetic variables runs, each using 4,000 sample points, which after averaging
would give an error 6 with probability . This procedure is widely used in statistical analysis,
see [13].

That is, let &1,&s,...,& be the results for k antithetic variables runs each using 4,000
f function evaluations. As already discussed, we may assume that they are approximately
normally distributed with mean m and variance s = s4y. Hence we want to find k& such that

e

=1

<5}>1—7]
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Figure 9: Density function (continuous line) based on one thousand Monte Carlo results
each using 4,000 sample points generated by RAN2 and the normal density function (dashed
line) with mean ms¢ and variance spy¢
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Figure 10: Density function (continuous line) based on one thousand antithetic variables
results each using 4,000 sample points generated by RAN2 and the normal density function
(dashed line) with mean m 4y and variance s4y
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Note that the sum %Ele ¢ is normally distributed with mean m and variance s/k, i.e.,

standard deviation y/s/k. To guarantee an error 6 with confidence level 68%, i.e., with
n = /2|7 [} e~ /2dt ~ 0.68269 which corresponds to one standard deviation from the

mean, we need to determine k; such that y/s/k; = 6. In this case,
ky = s/6* = 37,331,468/ 6%, (14)

To guarantee an error § with confidence level 95%, i.e., with n = \/2/7 [ e~P/2dt ~ 0.9545

which corresponds to two standard deviations from the mean, we need to determine ky such
that 2y/s/ky = 6. Therefore, in this case,

ky = 4s/8% = 149,325,872/6°. (15)

We now compare the performance of the Sobol algorithm with the antithetic variables
algorithm. Since Ug(f) = 14868261 is the result for 4,000 Sobol points, the error in this case
is

Us(f) — m]| = 2460.

Set 6 = 2460. Due to (14), to achieve an error at most 6 of 4,000 Sobol points with confidence
level 68%, we need to obtain approximately 7 antithetic variables runs each using 4,000
sample points and then to average them. Due to (15), to achieve error at most ¢ with
confidence level 95%, we need to obtain approximately 25 antithetic variables runs.

Clearly, the above analysis depends on the assumption about the true answer of the
integral. Furthermore, one may argue that by chance the result from Sobol points might
happen to be very close to the true answer. That is why we performed similar analysis for
the ten Sobol results that use n = 4,100 — 20z, ¢ = 0,1,....9, sample points and we set ¢
as the worst error of the ten Sobol results for tranche A. Then 7 antithetic variables runs
obtained before are replaced by 3 runs.

Results for the other tranches are summarized in Table 8. We emphasize that the number
of antithetic variables runs are for the worst error of n Sobol points for n = 4,100 — 20z,
1 =0,1,...,9. Hence, for a fixed ¢, the number of antithetic variables runs could be even
higher than the corresponding number in Table 8. From Table 8 we conclude that we need
from 7 to 79 antithetic variables runs each using 4,000 sample points to achieve an error with
confidence level 95% comparable with the worst error of n Sobol points, n = 4100 — 20z, : =
0,1,....09.

For the Monte Carlo algorithm, we proceed analogously. The results are summarized in
Table 9. From Table 9 we conclude that we need from 27 to 607 Monte Carlo runs each
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Tranche | with confidence 68% | with confidence 95%
A 3 10
B 20 79
C 4 15
D 2 8
E 2 7
G 9 36
H 7 27
J 12 A7
R 4 15
Z 2 8

Table 8: Number of antithetic variables runs each using 4,000 random points needed to
achieve the worst error of the n Sobol points with n = 4100 — 20z, : =0,1,...,9

using 4,000 sample points to achieve an error with confidence level 95% comparable with the
worst error of n Sobol points, n = 4100 — 20z, : = 0,1,...,9.

Remark 1

Similar statistical analysis may also be performed for a large number of sample points. Due
to the large computational cost of these simulations, we compare Sobol results with twenty
antithetic variables results (instead of 1000 results as for a small number of sample points),
each with different initial seed and using 1,000,000 function evaluations. Results for all
tranches are summarized in Table 10. We emphasize that the number of antithetic variables
runs are for the worst error of n Sobol points for n = 1,050,000 — 10,000z, : = 0,1,...,9.

By comparing Table 8 and Table 10, we conclude that the superiority of the Sobol
algorithm over the antithetic variables algorithm for a large number of sample points is
greater than for a small number of sample points.

Similar conclusion also holds for the Monte Carlo algorithm. Proceeding analogously, we
summarize the results of this comparison in Table 11.
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Tranche | with confidence 68% | with confidence 95%
A 14 56
B 153 607
C 14 173
D 35 137
E 53 212
G 64 255
H 38 153
J 67 266
R 13 52
Z 7 27

Table 9: Number of Monte Carlo runs each using 4,000 random points needed to achieve the
worst error of the n Sobol points with n = 4100 — 20z, : =0,1,...,9

Tranche | with confidence 68% | with confidence 95%
A 55 219
B 58 230
C 26 103
D 27 108
E 15 60
G 8 32
H 4 16
J 5 18
R 13 50
Z 5 18

Table 10: Number of antithetic variables runs each using 1,000,000 random points needed to
achieve the worst error of the n Sobol points with » = 1,050,000 — 10,000z, : =0,1,....,9
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Tranche | with confidence 68% | with confidence 95%
A 4134 1735
B 443 1769
C 246 982
D 350 1399
E 331 1324
G 62 245
H 31 122
J 14 176
R 30 120
Z 28 110

Table 11: Number of Monte Carlo runs each using 1,000,000 random points needed to achieve
the worst error of the n Sobol points with n = 1,050,000 — 10,000z, : =0,1,...,9

10 Timing Results and Parallel Speedup for the CMO
Problem

Since workstation clusters and networks provide a cost-effective means to perform large-scale
computation, we have built and debugged a distributed software system under PVM 3.2 for
computing multivariate integrals on a network of workstations. PVM is a software package
that allows a network of heterogeneous Unix computers to be used as a single large parallel
computer. In this section we report the timing results of the different generators on a single
workstation. Then the speedup of the distributed on a network of workstations software
system is also measured for the CMO problem.

The CPU time in seconds for simultaneous evaluation of the ten tranches is given in
Table 12 for Sobol, Halton, RAN2 from [28], RAN1 from [28], ranl from [27], and ran2 from
[27] generators. The real time in seconds, as should be expected, is slightly higher than the
CPU time. It is given in the second column since it is later compared with the real time for
the network of workstations to derive the parallel speedup. These results have been obtained
on a single Sun-4/630-M140 at the Department of Computer Science, Columbia University.
All programs have been compiled with the gcc v2.4 compiler with the highest level O2 of
optimization. Clearly, the generator of Sobol points is the fastest one. However, we do not
regard this as the most significant reason for the use of Sobol points.
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Generator | CPU time | Real time
Sobol 25634 25654
Halton 29814 29881
RAN2 31501 31607
RANI1 28092 28126
ranl 30911 30946
ran2 28320 28332

Table 12: Timing results in seconds for evaluation of the CMO using 1,000,000 sample points
on a single workstation

Since the speed of the Sun-4/630-M140 is 4.2 MFLOPS, we note from the above table
that it takes approximately 107,500 floating point operations to generate one 360-dimensional
Sobol point and to evaluate integrands for this problem. Since the cost of generating one
360-dimensional Sobol point is significantly smaller than the evaluation of the integrands,
it takes about 100,000 floating point operations to evaluate only integrands. Clearly, this is
a rather rough estimate. We stress that some interest rate and prepayment models used in
practice are significantly more complicated and more time-consuming to evaluate than the
ones considered in this paper.

We now discuss the parallel speedup for the finance problem achieved with the distributed
on a network of workstations software system. The software system for computing multivari-
ate integrals was tested on up to 25 SUN workstations and the timing results were measured.
The random number generator RAN2 and the Sobol generator were used. The results are
given in Table 13. We now compare the real time entry of RAN2 in Table 12 with entries
in Table 13. Let N be the number of workstations. In our case N is 5,10,15,20,25. The
speedup for the first three entries is about 0.99/N. Then it degrades slightly to 0.92N and
0.9N for the fourth and the fifth entries, respectively. We stress that this degradation of the
performance is partially due to the fact that the last several machines added for the test,
were slightly slower than the Sun-4/630-M140, which was used to measure the time on a
single workstation.

Similar speedups are measured for the Sobol generator. The speedups for the first three
entries are 0.96/NV,0.98N,0.98 N, respectively. The speedup for the last two entries is 0.91.V.

Therefore, networks of workstations are a cost-effective way to perform these compu-
tations. The measured speedup for the parallel/distributed software system for both the
Monte Carlo and deterministic algorithms is at least 0.9N for N < 25.
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Number of machines | Real time for RAN2 | Real time for Sobol
5 6382 5360
10 3170 2625
15 2113 1750
20 1705 1408
25 1398 1125

Table 13: Timing results in seconds for evaluation of the CMO using 1,000,000 sample points
generated by RAN2

11 Discussion and Future Directions

In this section we present some thoughts about why the Sobol points are so successtul. We
end with some directions for future research.

We give two reasons which we believe explain, at least in part, the success of Sobol points
in solving the CMO problem.

First, let us assume that there are no prepayments. This implies that the cash flow from
the underlying pool of mortgages for every month is constant. Due to the time value of
the money this means that the present value of the cash flow is a decreasing function of
the number of the month. In other words, the present value of the cash flow for earlier
months is greater than the present value of the cash flow for later months. The presence
of prepayments and rules of distribution to different tranches will distort this monotonicity
property. However, this property will be reflected to some extent in the cash flows of the ten
tranches. It is a well-known property of the Sobol points®, see [33], that the low dimensional
components are more uniformly distributed than the high dimensional components. As
pointed out by Sobol in [35], the Sobol points will be more efficient for numerical integration
of functions for which the influence of the z;-th variable decreases as j increases. Since this
property also holds for many other financial derivatives we expect that the Sobol points will
provide a powerful alternative to the Monte Carlo and antithetic variables algorithms.

Second, appropriate choices for the initial direction numbers increase the uniformity of
the Sobol points in the 360-dimensional unit cube. We believe that our choices of the initial
direction numbers contributes to the successful performance of the Sobol points.

The Halton algorithm did not perform as well as the Sobol algorithm. We believe that

20ther low discrepancy sequences also satisfy this property, see [21]
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this behavior is due to the fact that the Halton points are less uniformly distributed than
the Sobol points; especially in high dimensions and sample sizes of 1,000,000 or less, see also

18],

We end this section by suggesting some directions for future work:

e Compare the performance of low discrepancy and Monte Carlo algorithms on other
financial derivatives;

o Test the performance of other known low discrepancy sequences on various derivatives;

e As mentioned in Section 8, results for a small number of samples are often of special
interest in finance. It would be attractive to design new deterministic sequences which
are very uniformly distributed for a small number of points;

e Characterize analytic properties of classes of financial derivatives and design new al-
gorithms tuned to these classes;

e Study error reduction techniques for deterministic algorithms;

e There are numerous open theoretical problems concerning high dimensional integration
and low discrepancy sequences; see [42] for some of them. We believe that their solution
will aid in the design of better algorithms for finance problems.
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