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Abstract

This paper proposes an alternative option pricing model. The stock price follows a diffu-
sion process with stochastic volatility and random jumps while mean jump rate is modeled
as a stochastic process. The model is designed to address the problems with alternative
option models, for example, the extreme parameters of stochastic volatility model and the
fast convergence to normality of jump model. The proposed general model setting incorpo-
rates all current alternative models under Brownian motion framework, including the pure
jump model, stochastic volatility model and combination of the two. Option pricing formula
for the model is derived. Model parameters are backed out from option prices. In-sample
and out-of-sample performance of different sub-models in the framework indicates that the
stochastic jump rate is indeed an important improvement to current option pricing models.
This paper also Þrst compares these alternative models with Levy process option models,
which are characterized by the assumption that stock price is a purely discontinuous Levy
process. Empirical results show that generally, Levy process models are limited in their
capacity to improve Black-Scholes option pricing behavior.
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1 Introduction

1.1 The �Smile�

Since the Black-Scholes option pricing model was introduced in 1973, it has become the

most widely used and most powerful tool for trading in option markets. Over the past

two decades, however, researchers have found signiÞcant deviations of market prices from

predictions by the model. Out-of-money options tend to be traded at prices higher than

the Black-Scholes predictions. The fact is indicated by the so-called volatility �smile�. The

Black-Scholes model assumes a constant volatility for options written on one asset, while the

implicit volatilities derived from market prices are U-shaped when plotted against the strike

price. Evidence of the smile in stock options is documented by, among others, Rubinstein

(1985,1994), Dermin and Kani(1994), Dupire (1994). Melino and Turnbull (1990,1991) also

found a similar phenomenon with currency options.

Some characteristic features of the smile are also observed . First, for at-the-money

options, the implicit volatility increases with time to expiration. This observation is some-

times referred to as the �term structure� of implicit volatilities. Second, the smile has a

stronger effect over short-maturity options, and it tends to ßatten out monotonically with

the increase in option maturity. Third, the shape of the smile is not Þxed over time. Bates

(1991) found substantial evolution of the smile in S&P 500 futures options over the period

1985-87. It was roughly symmetric during most of 1986 and upward sloping in early 1987

and after the October crash. Many other researchers conÞrmed that since the market crash

in 1987 out-of-money puts have been undervalued by Black-Scholes - - and out-of-money

calls overvalued. In another word, the smile changes into a �smirk� since 1987.

The inconsistency with the predictions of Black-Scholes raises questions about the theo-

retical assumptions underlying the model, in which the underlying asset price has a condi-

tional log-normal distribution and returns in different periods are i.i.d normal. The presence

of volatility smile indicates that the distribution implied in option prices has longer tails

than log-normal distribution and the smirk effects suggests that the underlying distribution

is left skewed. The term structure of smile signals a complex evolution of higher moments

in the underlying distribution.
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1.2 Alternative Models

The recent bad performance of the Black-Scholes model has attracted much attention from

Þnancial economists, who have tried to Þnd a thicker-tailed, more left-skewed distribution

to better Þt the data. These efforts are further justiÞed by evidence from time series studies

that stock returns are not i.i.d normal, and there is also the question of whether a continuous

model is appropriate as a model for asset prices. Alternative models have been proposed to

relax these assumptions.

Eberlein and Keller (1995) and Eberlein, Keller and Prause (1998) proposed a hyperbolic

option pricing model, under which stock returns (although still i.i.d.) are modeled as having

a hyperbolic distribution. In their model, the price process itself is purely discontinuous,

having inÞnitely many jumps in each Þnite interval of time. Madan and Seneta (1991)

and Madan and Chang (1998) proposed another model featuring discontinuous prices, the

variance-gamma model. Both are examples of �Levy� processes and both imply that the

distributions of the returns are leptokurtic and skewed.

Merton (1976) also challenged the continuous property of the Brownian motion model,

adding random jumps governed by a Poisson process to the continuous path. Merton as-

sumed that jumps are non-systematic and diversiÞable, requiring no compensation in average

returns. Bates (1991) further discussed non-diversiÞable jumps and worked out an elegant

solution that takes jump risks into account.

Hull and White (1987) and Heston (1993) targeted the constant volatility assumption in

the Black-Scholes model. In their models the volatility itself is modeled as a mean-reverting

stochastic process driven by a Brownian motion. Heston (1993) generalized Hull and White�s

model (1987) by allowing the volatility process to be correlated with the stock price process.

This seems to be essential in generating excess skewness in the distribution. The stochastic

volatility models are related to the ARCH/GARCH models, of which Nelson (1993) showed

to be the continuous time limit.

Bates (1996a) applied a stochastic-volatility-with-jump model to the foreign exchange

option market, and Bakshi, Cao and Chen (1997) incorporated stochastic interest rates,

stochastic volatility and jumps in one general setting to evaluate their performance with

S&P 500 options.
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1.3 A Quick Evaluation of Alternative Models

Despite the variety of alternative option models, some facts remain unexplained. As Bates

(1996b) pointed out, the persistent time evolution of higher moments implicit in option prices

could not all be explained away by jumps and stochastic volatility. The problem expresses

itself in terms of unstable estimated parameters during different sample periods.

Jump and stochastic volatility models have their own strengths and weaknesses. Jump

models easily capture the skewness and excess kurtosis for options with a short maturity.

As the maturity increases, the jump component of returns converges to normal. This is

consistent with the fact that the smile tends to ßatten out for longer maturity options. But

according to Das and Sundaram (1998), the convergence rate of the jump component is

so fast that the excess skewness and kurtosis become negligible in a short time (in their

example, three months), and jump models have a difficult time to Þt the smile of options

with medium maturity.

Stochastic volatility models, on the other hand, are not capable of generating high levels

of skewness and kurtosis at short maturities under reasonable parameterization. For S&P

500 options data, in order to generate sufficient negative skewness, stochastic volatility model

requires a negative correlation of about -0.64 between price and volatility process, while the

correlation derived from time series is only around -0.12 according to Þndings by Bakshi,

Cao and Chen (1997). However, the stochastic volatility models have rich implications about

term structures and are more promising than the jump models when multiple maturity is

involved.

The hyperbolic model and the variance-gamma model are shown to outperform the Black-

Scholes model using German stock options data (Eberlein, Keller and Prause (1998)) and

S&P 500 options data (Madan and Chang (1998)). There is no cross comparison about their

competitiveness with Brownian motion type models listed above.

1.4 Theoretical Motivation

My research attempts to reevaluate the jump model by allowing the jump frequency (mean

jump rate) to be an independent stochastic process. Including a stochastic feature to the

model in addition to stochastic volatility and jumps may help to capture some of the time

variation in higher moments implicit in option prices. It also has the potential for im-

proving the traditional jump models, which have already proven effective in correcting the

Black-Scholes pricing errors. The main problem with traditional jump models is their quick

convergence to normality. The newly added randomness of the jump rate gives the model
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some features of stochastic volatility models and can be a counterforce to the convergence

process.

There is also an economic rationale for this model. If we interpret jumps as market

responses to information arrivals, it seems overly simple to assume a constant information

arrival rate overtime in today�s complex Þnancial market. Moveover, risks brought about

by jumps are usually measured as the product of the jump frequency and the mean size of

jump. A constant jump intensity implies Þxed jump risks over different time periods, which

also seems problematic.

The model is speciÞed in a general framework, under which almost all current option

models with Brownian motion can be accommodated. The effectiveness of stochastic jump

frequency will be studied against traditional jump and stochastic volatility assumptions. I

am also interested in comparing the Levy process models with competing alternative option

models. This will provide some insights as to the most promising direction in improving

the Black-Scholes model. Figure 1 illustrates the relationship between alternative models

covered in this paper.

The structure of the paper is as follows. Section II speciÞes theoretical models to be

studied in this research. The Þrst part describes the proposed model and its solution for

option price. The second part brießy introduces hyperbolic and variance-gamma models and

their solutions. The solutions are proposed in a slightly different manner, which not only

facilitates estimation but also makes them more comparable with other models. Section III

discusses the data and estimation procedure. Empirical results are presented in section IV.

Section V concludes and outlines future research directions.

2 Model SpeciÞcations

2.1 A Stochastic Volatility and Stochastic Jump Frequency Model

The model with stochastic jump frequency and stochastic volatility is speciÞed as follows:

ds

s
= (µ− d− λκ) · dt+√v · dZt + u · dq

dv = (α− βv) · dt+ σv
√
v·dWt (1a)

dλ = (θ − ηλ) · dt+ σλ
√
λ · dMt

µ : mean return of stock
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d : dividend

prob(dq = 1) = λ · dt
corr(dZt, dWt) = ρ

ln(1+ u)�N(ln(1+ κ)− 1
2
δ2, δ2)

Here s is the current stock price; v is the square of stock volatility; Z,W and M are

Brownian motions. M is independent of Z and W and all three are independent of the jump

u. The stock price is characterized as a diffusion process driven by the Brownian motion

Z but with random jumps following a Poisson distribution with parameter λ. The jump

frequency, λ, follows a mean-reverting process driven by an independent Brownian motion .

A jump has a mean size of κ and variance δ2 given that occurs. The stock price process is

correlated with the volatility process, as captured by a non-zero correlation coefficient ρ.

Under this model the market is not complete. The volatility risk and the ever-changing

jump risk can�t be hedged away using traded asset. We no longer have risk-neutral equiv-

alence as in the Black-Scholes world. Fortunately, the risk-neutral transformation of the

model can be obtained by explicitly taking risks into account. Applying the Cox, Ingersoll

and Ross (1985b) general equilibrium results and assuming log utility of market participants,

the model can be rewritten in a slightly different way:

ds

s
= (r − d− λκ∗) · dt+√v · dZt + u · dq

dv = (α− β∗v) · dt+ σv
√
v · dWt (2)

dλ = (θ − η∗λ) · dt+ σλ
√
λ · dMt

r : interest rate

ln(1+ u)�N(ln(1+ κ∗)− 1
2
δ2, δ2)

These starred variables are risk-neutral parameters, and they differ from their counter-

parts by an implicit risk premium. We work mainly with this model.

This model speciÞcation can accommodate all the previous models under the Brownian

motion framework. (1) Black-Scholes model (B-S). Upon setting α = β∗ = θ = η∗ = σv =

σλ = κ∗ = δ = ρ = 0; (2) Merton�s (1976) pure jump model (Merton) by α = β∗ =

θ = η∗ = σv = σλ = ρ = 0; (3) Heston�s (1993) stochastic volatility model (Heston), by

allowing θ = η∗ = σλ = κ∗ = δ = 0; (4) Bates jump-diffusion with stochastic volatility

(Bates) model, with θ = η∗ = σλ = 0 ; (5) The stochastic jump model (S-J), if we let

α = β∗ = σv = ρ = 0; (6) The general stochastic jump & volatility model (SV SJ) with none
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of the above restrictions are imposed on the parameters.

2.2 Solution for Option Price

The value of an European call option on the stock with strike price X and expiration date

T can be expressed as:

C(St, X, T ) = e
−r(T−t)E∗t (ST −X)+

= e−r(T−t)[(
Z ∞

X
STP

∗
t (ST )dST −X

Z ∞

X
P ∗t (ST )dST ) ] (3)

= St · π1 −B(t, T ) ·X · π2

where E∗t is the risk-neutral expectation conditional on what is known at time t; P
∗
t (·) is

the risk-neutral density function for ST ; B(t, T ) = e−r(T−t) is the risk neutral discount

factor from time t to T; and π2 = Pr(ST > X) is a risk-neutral probability. The quantity

π1 ≡ B(t, T ) · S−1t
R∞
X STP

∗
t (ST )dST can also be viewed as a probability if we express the

cumulative distribution function of ST , FST (s) as:

FST (s) =
Z s

0
wP ∗t (w)dw (4)

and deÞne a new cumulative distribution function as:

eFST (s) =
R s
0 wP

∗
t (w)dwR∞

0 wP ∗t (w)dw
= B(t, T ) · S−1t

Z s

0
wP ∗t (w)dw (5)

for s ≥ 0 and eFST (s) = 0 elsewhere. The second equality in (5) comes from the fact that

P ∗t (·) is the risk-neutral density function of ST , and the expected return of any asset in this
risk-neutral world should be risk-free interest rate, so that

E∗(ST ) = B−1(t, T ) · St (6)

Applying the new cumulative distribution function, eFST (s), we easily see that

π1 =
Z ∞

X

ST
E∗(ST )

P ∗t (ST )dST = 1− eFST (X) (7)
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The two probabilities π1 and π2 can be derived by inverting the corresponding charac-

teristic functions. The characteristic function of s = log(ST/St) that is associated with π2,

φ2(ξ; v,λ,Θ), is:

φ2(ξ; v,λ,Θ) = exp{(r − d)(T − t)iξ − α(T − t)
σ2v

(ρσviξ − β∗ − γ2)

− 2α
σ2v
ln(1+

(ρσviξ − β∗ − γ2)(1− eγ2(T−t))
2γ2

)− θ(T − t)
σ2λ

(−η∗ − γ02)

− 2θ
σ2λ
ln(1+

(−η∗ − γ02)(1− eγ02(T−t))
2γ0

) +
iξ + ξ2

ρσviξ − β∗ + γ2 1+eγ2(T−t)1−eγ2(T−t)
· v

− 2[(1+ k
∗)iξe

δ2

2
(iξ−ξ2) − 1− κ∗iξ]

−η∗ + γ02 1+e
γ0
2
(T−t)

1−eγ02(T−t)
· λ}, (8)

where

i =
√−1

γ2 =
q
(ρσv − β∗)2 + σ2v(iξ − ξ2) (9)

γ
0
2 =

r
η∗2 − 2σ2λ[(1+ κ∗)iξe

δ2(−ξ2−iξ)
2 − 1− κ∗iξ]

The details of deriving the function are given in Appendix 1. A similar method is applied

to get the characteristic function associated with π1, φ1(ξ; v,λ,Θ). Alternatively we can take

a short cut by making use of the relationship between φ1 and φ2.

φ1(ξ; v, s) =
Z ∞

0
eiξ ln(s)d eFST (s)

= B(t, T )S−1t
Z ∞

0
eiξ ln(s)s · dFST (s)

= B(t, T )
Z ∞

0
e(iξ+1) ln(s)dFST (s) (10)

= B(t, T )φ2(ξ − i)

The probabilities can be calculated by Þnding the inverse Fourier transform of the char-

acteristic functions.

prob(ST > X|φi) = πi = 1

2
+
1

2π

Z ∞

−∞
φi · e− ln(

X
st
)ιξ

ιξ
dξ (11)
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Following Kendall, Ord, Stuart(1987), after some algebraic manipulation, the integration

can be transformed into:

prob(ST > X|φi) = πi = 1

2
+
1

π

Z ∞

0

imag(φi) · e− ln(
X
st
)iξ

ξ
dξ (12)

=
1

2
+
1

π

Z ∞

0

real(φi) · e− ln(
X
st
)iξ

ιξ
dξ

2.3 Models Based on Levy Processes

2.3.1 The Hyperbolic Model

The hyperbolic distribution was introduced into the Þnancial context by Eberlein and Keller

(1995). It is speciÞed as follows:

dSt/St− = µdt+ dYt + e
σ4Yt − 1− σ4 Yt (13)

where Yt is a random variable with a hyperbolic density function:

f(α,β,δ,µ)(y) =

√
α2 − β2

2αδK1(δ
√
α2 − β2)e

−α
√
δ2+(y−µ)2+β(y−µ) (14)

HereK1 denotes the modiÞed Bessel function of the third kind with index unity. The moment

generating function takes the following form

M(ξ) = eµξ
√
α2 − β2

K1(δ
√
α2 − β2)

K1(δ
q
α2 − (β + ξ)2q

α2 − (β + ξ)2
. (15)

The hyperbolic process has almost surely inÞnitely many discontinuities in any Þnite

interval of time. When the stock returns follow the hyperbolic distribution as speciÞed

above, the payoffs of options can�t be replicated with portfolios of riskless bonds and the

underlying asset alone. Thus the equivalent martingale measure is not unique. Eberlein

and Keller (1995) proposed an �Esscher transform� approach to Þnd an equivalent measure,
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but their �statistical approach� is more comparable to other methods that I shall apply.

Risk-neutrality imposes the following relationship among parameters:

µ = r − ln K1(δ
q
α2 − (β + 1)2)

K1(δ
√
α2 − β2) +

1

2
ln
α2 − (β + 1)2
α2 − β2 (16)

Substituting for µ in (15) and converting M(ξ) to the characteristic function, as φ(ξ) =

M(iξ), the price of an European option can be derived by the same method discussed in the

last section.

2.3.2 Variance-Gamma Model

Madan and Seneta (1990) and Madan and Milne (1991) proposed a model under which stock

prices follow another purely discontinuous process � variance-gamma process. This process

has two parameters (θ and ν) that account for skewness and kurtosis in addition to the

volatility parameter (σ) in the Black-Scholes model.

The risk-neutral process of stock price is speciÞed as

S(T ) = S(t) exp(r(T − t) +X(σ, v, θ) +$(T − t)) (17)

$ =
1

v
ln(1− θv − σ2v/2)

and X(σ, v, θ) is a variance-gamma distribution � a mixture of normals with gamma

distributed variance � with density function

f(x) =
Z ∞

0

1

σ
√
2πg

exp[−(x− θg)
2

2σ2g
]
g
(T−t)
v

−1 exp(− g
v
)

v
t
vΓ(T−t

v
)

dg (18)

The characteristic function for the variance gamma process is

φ(ξ) = (1− ιξθv + (σ2v/2)ξ2)−(T−t)/v (19)

As before, knowing the characteristic function, we can use Fourier inversion to get the

probabilities in the option pricing formula (3), as described in equation (12).
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2.3.3 Fast Fourier Transform (FFT)

Given a set of model parameters Θ, the crucial step of calculating an option price is to com-

pute the two probabilities in equation (12), which requires evaluating the inÞnite integrals

involved in the Fourier inversion. The integrals can be evaluated numerically. The IMSL For-

tran library provides a subroutine DQDAGS that can handle quite complicated integrands.

Although DQDAGS is efficient in approximating one integral, the Fast Fourier Transform

(FFT) is a better technique when we need to price many options with different strike prices

all at once. Since the probabilities derived from the FFT may not be at the exact point of

price/strike ratio for each option individually, we employ a two-point extrapolation rule to

get the approximate probability for each price/strike ratio. Table 1 compares accuracies of

FFT and DQDAGS and shows that the difference is acceptably small. Calculation time can

be reduced by more than half using the FFT.

Table 1

Difference Between Option Prices from DQDAGS and FFT

Number of Options Range of log(s/x) Max. Diff. Mean Diff. Min. Diff.
5852 (t=0.25) [-0.78, 0.42] 0.01 0.004 0.0
5852 (t=0.35) [-0.78, 0.42] 0.007 0.002 0.0
5852 (t=0.50) [-0.78, 0.42] 0.02 0.004 0.0

Note: The check is done with current strike price set at 100.00 and stock prices calculated

according to the strike to price ratio. The t value in the parenthesis is time to expiration of

options. The exercise is about the Bates SJ model with hypothetical model parameters.

3 Data and Estimation

3.1 Data Description

This research applies the models to individual daily CBOE transaction data during the month

of July 1996. Each transaction record includes the time at which the transaction takes place,

the strike price, time to maturity, the bid and ask option price, and the matching stock price.

We expect the non-synchronous trading problem to be minimal. The analysis is applied to

a representative individual stock option and S&P 500 index option. IBM is selected for

the individual stock option analysis because of its active trading. Most individual stock

options traded on CBOE are of the American type, which should be valued more than their

European counterparts. However, if we restrict our subjects to call options only and if there
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is no dividend payment during the lifetime of the option, then the value of an American

option is not different from that of a corresponding European option.

The IBM options are actively traded. To avoid noisy information, all options with less

than one week to expire are discarded. There was a dividend payment in the amount of

$0.35 on Sept. 10, 1996. To get around the problem of possible early exercise of American

calls, we only use IBM call options maturing in July and August. There are around 1,000

transactions for each maturity on an average day.

S&P 500 options are European options, an advantage that provides us with a wide range

of strike prices and maturity date to work with. Four maturity periods are selected for

estimation on each trading day�July, August, December and March before July options

mature on the 18th. After July options mature, October options are added to the analysis.

The maturity of the options range from 8 days to 185 days. Options with maturity less than

a week and price less than $1 are disregarded in order to avoid possible noises.

Trading in S&P 500 options are extremely intensive. To alleviate the computational

burden, we only include call options in this stage. On each trading day, we pick the Þrst

valid transaction record for each strike price and maturity date as a representative data

point. There are typically 60 to 100 options data available everyday.

Treasury bills yields with corresponding expiration times are used as a proxy for the

interest rate. Although the interest rate is assumed constant over the lifetime of each option,

the yield information was manually collected for each trading day in July, 1996. We take the

average of the bid and ask yield as our interest rate. Treasury bills are due on the Thursdays

of each month, so we pick the rate corresponding to the third Thursday of each month.

Time to maturity of both options are calculated in terms of trading days. In the case of

S&P 500 options, the annual dividend rate is extracted from the daily S&P 500 future price

and S&P 500 closing price by the following relationship:

d = r − ln(F/S)/t (20)

where d is the annual dividend rate, r is the interest rate, F is the future price, S is the

current stock price and t is time to maturity. We use the average of the calculated dividend

rate.

To see whether the IBM and S&P 500 data are appropriate for a study designed to

capture the smile effect, we Þrst construct the implicit volatility curve from option data on

a typical day. Figure 2 and Figure 3 clearly show that a smile does exist in those data,
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signaling a failure of the Black-Scholes pricing formula.

3.2 Estimation Procedure

The theoretical models for prices pertain to a risk-neutral world. Neither the risk-neutral

stochastic process nor the timing and size of jumps is directly observable. It is thus impossible

to estimate the model directly from observed stock prices. However, the parameters can be

backed out from option prices via nonlinear least square (NLS) method by solving

min
Θ

X
j

[Cj(St, X, T − t)− cCj(St, X, T − t;Θ)]2, (21)

where Cj(St,X, T − t) is the actual price of an option, struck at X and expiring at the T − t
units of time, and cCj(St, X, T − t;Θ) is the price of the same option predicted by the model,
given parameters Θ.

The parameters are the ones that minimize the mean squared errors of market prices

from predicted prices. DeÞning the mean squared errors as the absolute difference between

theoretical price and market price would put more weight on high-priced options � usually

in-the-money options and options with a longer maturity � than on low-priced options.

Nevertheless, a lot of researchers use this simple method. Our choice is consistent with that

of Bakshi, Cao and Chen (1997) and Bates (1996a).

4 Empirical Results

4.1 In-Sample Fit

The estimation procedure described above is repeated for each model with each trading day�s

data. The averages of all parameters are reported in Table 2 and Table 3, for IBM data and

S&P 500 data respectively. The resulting sum of mean squared errors (SSE) can be viewed

as a measure of in-sample Þt. Since there are different numbers of observations on different

trading day, we report the ratio of sum of mean squared errors for each model to that of the

Black-Scholes model. Roughly speaking, the lower the ratio, the better the model corrects

the mispricing of Black-Scholes.

The empirical results from this research are quite interesting. For IBM data, we only

focus on Þve sub-models of the general framework: the Black-Scholes model (B-S), Merton�s
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pure jump model (Merton), Heston�s stochastic volatility model (Heston), Bates� stochastic-

volatility -with-jump model (Bates) and the constant-volatility-with-stochastic-jump model

(S-J). Hyperbolic model is also estimated with IBM data.

The results from IBM data are generally consistent with the Þndings of previous research.

The Merton pure jump model by itself reduces Black-Scholes squared pricing error by more

than 50 percent. Stochastic volatility is still a more powerful model, cutting Black-Scholes

errors by more than 60 percent and thus explaining a dramatic part of the smile. Combing

stochastic volatility and jump models does a better job than either alone. As predicted, the

stochastic volatility model implies a strongly negative correlation, ρ between stock prices and

volatility. Having jumps in addition to stochastic volatility allows some negative skewness

to be absorbed by the negative jump mean κ∗ . For this reason, we get a smaller value of ρ

for the Bates model.

One interesting observation is that the S-J model with constant volatility, which has one

less parameter than the Bates model, turns out to give a slightly better in-sample Þt. The

tentative conclusion is that, in the case of an individual stock option, although the traditional

jump model can not outperform the stochastic volatility model, it can do a lot better when

the jump density is allowed to vary.

The hyperbolic model, which has never before been applied to US data, can reduce the

Black-Scholes squared pricing errors by only a marginal 30 percent.

We conduct the same estimation procedure with the S&P 500 data. Due to the availability

of more strike price range and more maturities, all the models, including the general SV SJ

model have been estimated. In the case of S&P 500 options, sub-model S-J still outperforms

both the Merton model and the Heston model, but the Bates model, with one more parameter

than the S-J model, turns out to be the best among all sub models. Parameter values

are generally consistent with previous study applied to the same data in different time

periods (Bakshi, Cao and Chen 1997), though the mean-reverting parameter β for stochastic

volatility process is relatively large in this particular data set.

The SV SJ model does improve the in-sample Þt even further compared with the Bates

model. This justiÞes our motivation of analyzing a stochastic jump rate process. As we

should expect, compared with the simple stochastic volatility model, the Heston model, the

Bates model Þts the data better with a smaller negative correlation between stock price

process and volatility process. The SV SJ model attributes more negative skewness to the

stochastic negative jump component and results in a even smaller correlation between stock

price process and volatility process ρ. The SV SJ model also improves the S-J model in the

sense that it reduces the absolute value of mean jump rate required by channeling some of
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the smile effect through the stochastic volatility process.

From the in-sample Þt results we can conclude that the stochastic jump rate improves

the traditional jump diffusion model with constant jump rate. It makes jump-type models

a competitive alternative against models based on stochastic volatility assumption. The

improvement with S&P 500 data is signiÞcant, though it is not as great as with the IBM

data. It may have something to do with the different natures of IBM options data and S&P

500 options data.

First, the jump type model still holds an advantage in Þtting shorter maturity options.

To some extent, the superior performance of S-J model in the IBM case may contribute to

the relatively shorter maturity data we used in the estimation process. Second and more

important, from our economic rationale where our jump type models are rooted, the source

of jumps and stochastic movements in jump rate is information. In the individual stock

option case, the information pertaining to the particular Þrm in question affects directly

investors� expectations about the Þrm�s future. S&P 500 option, on the other hand, consists

of representative stocks from all industries, information affecting different Þrms or different

industries tend to cancel out. Therefore it is hard for jump type models to capture the

behavior of the stock in general with complicated co-movement between individual stock

component.

Table 2

Estimated model parameters and in sample Þt-IBM

B-S Merton Heston Bates S-J Hyp
α 0.57 0.34 545.34
β∗ 6.15 8.23 -6.37
σv 0.005 0.003
ρ -0.74 -0.68
λ 0.659 1.8 0.89
κ∗ -0.0716 -0.027 -0.065
δ2 0.023 0.034 0.043 0.2
θ 2.04
η∗ 12.4
σλ 0.45√
ν 0.305 0.28 0.28 0.274 0.276

SSE (%) 100 46 36 27 25 73
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Table 3

Estimated model parameters and in sample Þt-S&P500

B-S Merton Heston Bates S-J SV SJ Hyp V-G
α 0.14 0.15 0.068 22311
β∗ 4.57 8.93 6.5 -22194
σv 0.48 0.22 0.20
ρ -0.82 -0.58 -0.48
λ 1.42 0.39 0.44 0.41
κ∗ -0.075 -0.11 -0.38 -0.21 0
δ2 0.008 0.011 0.15 0.047
θ 1.53 0.66 -0.045
η∗ 32.66 5.06
σλ 4.05 1.069√
ν 0.14 0.12 0.15 0.15 0.11 0.14

σ 0.091
v 0.054
SSE (%) 100 53 39 33 35 20 86 93

4.2 Out-of-Sample Forecast

Out-of-sample predictions of different models are presented in Table 4 and Table 5. The

entries are average absolute pricing errors. To obtain this, parameters for each model were

estimated with options data from each day and used to price options for the next day.

The pricing errors for all alternative models (labeled Merton, Heston, Bates, S-J) and the

standard Black-Scholes model (labeled B-S1) were generated in the same way, using all

traded options to estimate the parameters. Due to the poor in-sample performance of Levy

process models, out-of-sample prediction exercise is not performed on them.

The pricing errors in the column labeled B-S2 were produced under a different scheme,

estimating a unique volatility for each price/strike ratio � a common empirical practice

used by practitioners and traders. SpeciÞcally, we grouped the options data according to

price/strike ratio, estimated a volatility particular to each of several ranges and used that

particular volatility in pricing a similar option on the next day.

The results in Table 4 show that the Black-Scholes model had extreme difficulty in

predicting mildly in�the-money IBM calls with price/strike ratio ranging from 1.03 to 1.07

during July 1996. The pricing errors are somewhat smaller with the strike-based volatility

scheme, but still amounts to more than 10 cents on average. The Bates model and the

S-J model are generally better than the others with the S-J model producing the smallest

pricing errors except in the far out-of-money category. The Merton model does a good job
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in predicting far in�the-money calls, but its limitations are obvious, since it behaves even

worse than Black-Scholes for calls out of money.

Results in Table 5 are out of sample pricing errors for S&P 500 options. We can see that

the out-of-sample performance for Black and Scholes model is extremely unreliable, averaging

around a dollar. The out-of-sample performance for the Merton model, the Heston model

and the S-J model are very similar, with the Merton model performs better to predict far

in-the-money calls and the Heston model does better over at-the-money options. The Bates

model outperforms all other sub-models. The SV SJ model is the best among all in most

categories except for at-the-money options.

Table 4

Out of Sample Predictions-IBM

Price/Strike ratio B-S1 B-S2 Merton Heston Bates S-J
<0.93 0.052 0.053 0.083 0.051 0.041 0.046
[0.93,0.97] 0.092 0.091 0.077 0.081 0.073 0.071
(0.97,1.03] 0.114 0.112 0.056 0.063 0.062 0.051
(1.03-1.07] 0.410 0.123 0.090 0.058 0.058 0.049
>1.07 0.151 0.095 0.054 0.057 0.053 0.055

Table 5

Out of Sample Predictions-S&P500

Price/Strike ratio B-S1 Merton Heston Bates S-J SV SJ
<0.95 0.61 0.44 0.39 0.31 0.41 0.24
[0.95,0.98] 1.24 0.59 0.58 0.18 0.58 0.29
(0.98,1.03] 1.12 0.80 0.39 0.30 0.52 0.24
(1.03-1.07] 1.33 0.41 0.44 0.22 0.43 0.21

5 Conclusion and Future Research

In this research, we propose a new and general model for option prices that allows for

stochastic volatility with jumps at a stochastic mean rate. A computational formula for the

option price has been derived. The empirical results with IBM options data and S&P 500

options data show that adding a stochastic jump rate to the traditional jump model, generally

reduces the pricing errors in Black-Scholes formula and makes the jump type models a strong

alternative to stochastic volatility models. In the case of IBM options, the S-J sub-model

outperforms the Bates model both in-sample and out-of-sample, even though it is a more

parsimonious model.
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This research also shows that the Levy process models couldn�t compete with the Brown-

ian motion type alternative models in reducing the Black-Sholes pricing errors. Both Hyper-

bolic model and variance gamma only manages to do better than the Black-Scholes model.

The improvement is far less signiÞcant than Brownian type models with comparable com-

plexity, for example, the Merton model and the Heston model. The discontinuity in the

stock price process is addressed as discontinuous jumps to a diffusion process rather than as

a purely discontinuous process, which is the core assumption of Levy process models.

This study also derives an interesting result. The stochastic jump assumption dramati-

cally improves option pricing behavior, both in-sample and out-of-sample, in the case of an

individual stock option. Its effects on the S&P 500 options are less dramatic. We tentatively

explain that it may be due to different natures of the options. To understand this perplexing

fact more clearly and to further study the merits for stochastic jump rate model, we need to

take a closer look at the distribution implications of different models involved in this analy-

sis. We can then examine the effects each parameter has on the behavior of the distribution

and its higher moment.

Appendix 1

We determine the characteristic function corresponding to the following model speciÞ-

cation:

ds

s
= (r − d− λκ∗) · dt+√v · dZt + u · dq

dv = (α− β∗v) · dt+ σv
√
v · dWt

dλ = (θ − η∗λ) · dt+ σλ
√
λ · dMt

First transforming the Þrst equation using Ito�s lemma, as:

d ln s = (r − d− λκ∗ − v/2) · dt+√v · dZt + ln(1+ u) · dNt,
we can work out the moment generating function of ln s as follows, the moment generating

function, M(ξ|s, v,λ, T − t), must satisfy the partial differentiation equation:
−MT−t + (r − d− λκ∗ − v

2
)Ms + (α− β∗v)Mv +

1
2
v(Mss + 2ρσvMsv + σ

2
vMvv)

+λE[M(s+ ln(1+ u))−M(s)] + (θ − η∗λ)Mλ +
1
2
σ2λλMλλ = 0
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subject to the following boundary condition:

M |T−t=0 = eξs.

Guessing the functional form of M as

M(ξ; s, v,λ, T − t) = exp(ξs+A(T − t, ξ) +B(T − t, ξ)v + C(T − t, ξ)λ)

and plugging the proposed form into the partial differentiation equation gives

−A0
T−t −B 0

T−tv −C 0
T−tλ+ (r− d− λκ∗ − v

2
)ξ + (α− β∗v)B + 1

2
v(ξ2 + 2ρσvB + σ

2
vB

2)

+λ[(1+ k∗)ξeδ
2(ξ2−ξ)/2 − 1] + (θ − η∗λ)C + 1

2
σ2λλC

2 = 0.

The above equation will hold for all values of s, v,λ , so it must satisfy

−A0
T−t + (r − d)ξ + αB + θC = 0 (1)

−B 0
T−t −

ξ

2
− β∗B + 1

2
ξ2 + ρσvB +

1

2
σ2vB

2 = 0 (2)

−C 0
T−t − κ∗ξ + [(1+ k∗)ξeδ

2(ξ2−ξ)/2 − 1]− η∗C + 1
2
σ2λC

2 = 0 (3)

From (2), we can solve for the functional form of B(T − t, ξ) as

B(T − t, ξ) = −ξ − ξ2
ρσvξ − β∗ + ρσv + γ1 1+eγ1(T−t)1−eγ1(T−t)

,

where

γ2 =
q
(ρσv − β∗)2 + σ2v(ξ − ξ2).

From (3), we can solve for the functional form of C(T − t, ξ) as

C(T − t, ξ) = −2[(1+ k
∗)ξe

δ2

2
(ξ+ξ2) − 1− κ∗ξ]

−η∗ + γ02 1+e
γ0
2
(T−t)

1−eγ02(T−t)
,

where

γ
0
2 =

r
η∗2 − 2σ2λ[(1+ κ∗)ξe

δ2(ξ2ιξ)
2 − 1− κ∗ξ] .

18



19

                                     NO     YES

     Jumps      
         Stochastic Volatility

Stochastic jump
density

Figure 1: Relationship of Alternative Option Pricing Models

Brownian
Motion?

Merton
Model

Heston
Model

S-J Model

Bates
Model

SV_SJ
Model

Hyperbolic
Model

Variance
Gamma
Model



20

Volatility Smile--IBM August Options
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Figure 2: Volatility Smile of IBM Options
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Volatility Smile--S&P 500 December Options
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Figure 3: Volatility Smile of S&P 500 Options
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