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Abstract

The problem of pricing an American put option on a non-dividend-paying stock is an-
alyzed from the perspective of Dynamic Programming. The results obtained are shown
to be consistent with the more developed Contingent Claim Analysis paradigm of finan-
cial economics literature. A brief investigation of the issues related to continuous time
modeling with Ito processes is also considered.

1 Introduction

An option is a security giving the right, but not the obligation, to buy (call option) or to sell
(put option) an asset, for a certain price, within a specified date. The price in the contract
is known as exercise price or strike price; the date in the contract is known as the expiration
date or maturity. A “European option” is one that can be exercised only on a specified future
date. An “American option” is one that can be exercised at any time up to the date the
option expires.

It is immediate to deduce from the definitions that American-type options involve a more
“active” participation of the holder which is called at each time to decide whether or not to
exercise his claim, whereas for Furopean options this decision is delayed at the expiration
date and assumes the form of a “now-or-never” decision.

Aware of this structure implied by the nature of the American-type options, we will
develop in this paper a simple approach for the pricing of American put option based on
Dynamic Programming. One may wonder why we explicitly refer to put options and vol-
untarily exclude call options from our analysis. The answer is a basic well-known result in
option pricing according to which it is never optimal to exercise an American call option on a
non-dividend paying stock prior to its maturity. In this case, in fact, the value of the Amer-
ican option turns out to coincide with the corresponding European option and well-known
techniques for pricing these claims can be used. On the contrary, the above irrelevancy does
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not hold for American put option: it is in fact possible to show that at any time during its
life a put option should be exercised if it is sufficiently in the money (i.e. if the price of the
underlying share is sufficiently below the exercise price). ' This implicit “dynamic” content,
makes the problem of early exercise of an American put option, even in the simplest case of
non-dividend-paying stock, worth investigating.

The decision that the holder of a put option is facing is a timing decision: when is it better
to exercise? This problem, whose solution directly leads to the issues of optimal pricing of an
option, can be analyzed with two different techniques: dynamic programming and contingent
claim analysis. They are in fact closely related to each other, and lead to identical results
in many applications. However they make different assumptions about financial markets and
the discount rates that individuals use to value future cash flows.

Dynamic programming is a very general tool for dynamic optimization and is particularly
useful in treating uncertainty. It breaks the whole sequence of decisions into just two compo-
nents: the immediate decision, and a valuation function that encapsulates the consequences
of all subsequent optimal decisions, starting with the position that results from the immediate
decision. If the planning horizon is finite, as it is in our problem, the very last decision at its
end has nothing following it and can therefore be found using standard static optimization
methods. This solution then provides the valuation function appropriate to the penultimate
decision. That, in turn, serves for the decision two stages from the end, and so on. One can
work backwards all the way to the initial condition.

Contingent claim analysis builds on ideas from financial economics. In this approach the
put option is seen as an assef that has a “dividend” at the exercise date and that, because
of this, has some value in the market. The basic assumption is that the pattern of returns
generated by the option is always replicable by using a combination of traded assets on the
market (this assumption is referred to as completeness of financial markets). All one needs
is therefore a combination, or portfolio, of traded assets that will replicate the pattern of
returns from the option at every future date and in every future uncertain eventuality. The
composition of this portfolio needs not be fixed; it could change as the prices of the component
assets change. Then the value of the option must be equal to this replicating portfolio, because
any discrepancy would present an arbitrage opportunity. In practice, to price an option, a
riskless portfolio is formed containing the option and some other “risk-neutralizing” assets;
once this portfolio is formed its return is set equal to the return of a riskless bond (risk-free
interest rate) and the price of the option is obtained as a consequence.?

Although its flexibility and great generality, dynamic programming has not received as
much attention as contingent claim analysis from the finance literature, even if the trend of
these last years seems moving in the direction of an increasing use of dynamic programming
techniques. In this paper we will show how dynamic programming can provide useful results in
the problem of pricing an American put on a non-dividend-paying stock. It will be interesting

1See Appendix.

2This is the logic behind the Black-Scholes (1973) and Merton (1973) model for pricing derivatives securities.
Geske and Johnson (1984) provide an analytical formula for the American put derived under the paradigm of
contingent claim analysis.



to see that these results can be “dually” read in the perspective of a contingent claim analysis
approach. We will also analyze, at an intuitive level, the the problems arising in the case of
continuous-time models for pricing the American put and, in the special case of [to processes,
we will provide the structure of the optimal exercise policy.

2 A Two-Period Example

As we mentioned above, an American put option gives the right but not the obligation to
sell a particular security at a particular price within a specified date (expiration date). If we
call s; the price of the underlying security on which the option is written and I the exercise
price, it turns out that the payoff, V}, from exercising the put option on one asset at any time
t is given by the well-known expression

/i = max[] — s, 0].

In order to provide a concrete setting for the problem of valuation of an American put
option, let us consider, as a first step, a very simple two-period example. The holder of the
put is facing the alternative to either exercise the option now (¢ = 0) or wait one period
and decide next period (f = 1) whether to exercise or not. To keep things simple let us
assume that the price of the underlying security in period ¢ = 0 is sg and in period ¢t = 1
is s, = (1 4+ u)sg with probability ¢ and s; = (1 — d)sg with probability (1 — ¢), where
0 < u,d < 1. This is a very simple Markov Decision Problem in which the decision epochs
are t = 0 and t = 1; the states of the system are represented by the set S of prices of the
underlying security & = {80, 8y, 34}; the actions at each decision epoch are {C,Q} where
C means “do not exercise the option” and () means “exercise the option”. The rewards at
time ¢ are (s, Q) = I — s, if the option is exercised and 74(s;,C') = 0, if the option is
not exercised in ¢. For simplicity we assume that there are not contracting costs in this last
case. Iinally, the transition probabilities are simply given by the above assumption on the
stochastic process for the price of the underlying security: p(s,|so) = q and p(sq|sg) =1 — ¢;
we note that these transition probabilities are not affected by the decisions made by the
investor and, in this example, are assumed to be time-independent.

The problem faced by the holder of the put option is therefore an optimal stopping
problem where stopping means exercise the option. At an intuitive level we can argue that
the investor is looking for a strategy (i.e. a stopping time) that maximize the expected
present value of his claim. Assuming the existence of an interest rate ¢ at which future payoff
are discounted?, this optimality criterion together with the above formulation of the Markov
Decision Process, define a finite-horizon Discounted Markov Decision Problem. We will see in
the next section that this intuitive optimality principle actually has a deep economic meaning
and that its validity is supported by exigency of avoiding arbitrage opportunities.

In order to solve the above problem it is natural to work backwards from time 1 to time 0.
At time 1 (last decision epoch) the decision to exercise or not will be based on the realization

3We interpret this as an opportunity cost for the investor.



of the underlying price at time 1. Let sy € {s4,3,}, if s < I it is convenient to exercise the
option, if s; > I the option will remain unexercised. Therefore the payoff from an optimal
policy at at time 1 is given by:

Vi*(s1) = max[] — s1,0].

At time 0 the investor is facing a different trade-off: exercise now or wait and do what is
best when period 1 arrives. To assess this the investor must look ahead to his own actions
in different future eventualities. From period 1 onward the condition will not change and so
there is no point waiting at time 1 when profitable exercise is possible. Suppose the investor
does not exercise at time 0 but instead waits. In period 1 the price of the underlying asset will
be s, with probability ¢ and s4 with probability 1 — ¢q. For each of these two possibilities the
investor will exercise if s; > I, realizing the payoff V;*(s1) determined above. This outcome of
future optimal decisions is also called the continuation value. From the perspective of period
0, the period-1 price s; and therefore the values V{*(s1) are all random variables. Let Eg be
the expectation calculated using the information available at period 0. Then we have:

Eo[Vi'] = qmax[] — s,,0] 4 (1 — ¢) max[] — s4,0]. (1)

Now we return to the decision at period 0. The investor has two choices. If he exercises the
option, he gets the value I — sg. If he does not, he gets the continuation value Ey[V}*] defined
above, but that is available in period 1 and hence must be discounted by the factor 1/(1+ ¢)
to express it in period-0 units. The optimal choice is obviously the one that yields the larger
value. Therefore the net present value of our option, optimally managed, is:

1
142

What we unconsciously did in this derivation is simply building up a very simple Bellman

V§ = max {I — o, Eo[Vl*]} (2)

equation which gives the solution to the problem of finding the optimal strategy (i.e. optimal
stopping time) that maximize the value function V. In the next section we will prove that
this value is the only value for an American put that can “survive” arbitrage strategies in a
complete frictionless financial market. It will be interesting to see how a result suggested by
the intuition of dynamic programming actually possesses a very deep interpretation in term
of equilibrium price in a complete financial market.

The result derived above in an intuitive way captures the essential idea of dynamic pro-
gramming. We split the whole sequence of decisions into two parts: the immediate choice,
and the remaining decision, all of whose effects are summarized in the continuation value. To
find the optimal sequence of decisions we work backward. At the last relevant decision point
we can make the best choice and thereby find the continuation value (V;* in our case). Then
at the decision point before that one, we know the expected continuation value and therefore
can optimize the current choice. In our example there were just two periods and that was
the end of the story. When there are more periods, the same procedure applies repeatedly.

Of course the optimal strategy of the example above varies as long as the parameters
S0, ¢ and ¢ vary. It is particularly interesting to see the sensitivity of the optimal policy to



changes in the price of the underlying security. This variable is probably the most important
in determining the optimal policy for the holder of a put option: once he observes the price of
the underlying security he has to make a decision whether to exercise or not. The intuition is
that if the call is sufficiently “in the money”, which means that the current price is sufficiently
below the exercise price I, than it is optimal to exercise; on the other hand, it seems reasonable
to believe that if the option is not sufficiently deep in the money, than it is optimal to wait
one period and delay the decision. We will see with a numerical example that this is what
actually happen in our case.

ExaMPLE. Let us assume that u = d = 0.5, ¢ = 0.5, I = 10 and 7 = 10%. We are interested
to see how the optimal policy at time 0 changes with the price sg of the underlying security
at time 0. Substituting the numerical values in (2) and (1) we obtain:

*
Vo

1
max {10 — o, HEO[VI*]}

1
= max {10 — S0 7y [gmax[10 — 1.550,0] 4 (1 — ¢) max[10 — 0.5s¢, 0]]}

From which we deduce that
- if 59 < 7.058, then V' = 10 — sp;
- if 7.058 < s < 20, then V§ = {5 Eo[Vy'] = 75 - (10 — 0.550);
- if 59 > 20, then V3 = 0.

The value of the put option is hence a convex, piecewise-linear function of the current price,
so and the optimal decision rule likewise depends on sg. If sp < 7.058 the investor should
exercise immediately. If 7.058 < sg < 20 it is optimal for the investor to wait one period and
then exercise in period 1 only if the option is in the money. Finally, if 5o > 20, V77 = 0 and the
investor should never exercise. The reason for this last case is to be found in the probabilistic
assumptions on the stochastic process governing the price of the underlying security. Given
our naive process, if at time 0 the price is greater than 20 it is almost sure that the option
will end up never being in the money in the next period and therefore the optimal policy
suggested is never exercise a priori. This solution is summarized in the following table:

‘ Region ‘ Option Value ‘ Optimal Decision Rule ‘
sg < 7.058 10 — s Exercise
7.058 < sp < 20 | £ - (10 — 0.5s0) Wait
so > 20 0 Never Exercise




3 Many Periods

We now generalize the two-period example above to the case of finitely many decision epochs.
In this section we continue to assume, however, that uncertainty is modeled using discrete-
time Markov processes. In the next sections we will mention how results obtained in this
framework can be extended to a continuous time setting where uncertainty takes the form of
a Wiener process or more general diffusion processes for the state variables.

Let S be the set of possible states of the system. At each time ¢ the state of the system
is represented by a state variable s; € §. In our example this variable was the price of the
underlying asset, but, in an very general sense, the theory extends readily to vector states of
any dimensions (provided it make sense to write options on a multiple set of state variables).
At any date ¢ the current value of this variable s; is known, but future values s;41,si42. ..
are random variables. We suppose that the process is Markov, that is, all the information
relevant to the determination of the probability distribution of future values is summarized
in the current state s;.

At each period t = 1,..., N — 1 the investor is facing the problem of exercising the option
or wait one period and delay the decision. His action, as, at time t, is therefore a binary
variable whose value C represent waiting and () represents exercising at once. We will assume
that the value of this variable must be chosen using only the information that is available
at that time, namely s;. In other words we restrict our attention to Markov policies: this is
natural in the case of the American put option in which the payoff depend on the underlying
price of the asset at the exercise date.* It is well known that when, as in our case, rewards
and transition probabilities depend on the past only through the the current state of the
system, the optimal value functions depend on the history only through the current state of
the system and this enable us to insure the existence of optimal policies which depend only
on the state of the system at the relevant decision epoch.

The state and the action at any time ¢ affect the immediate reward of the investor and
the transition probabilities. We will indicate with ®;(s;+1|s¢, @) the cumulative probability
distribution function of the state next period conditional upon the current information. If
the set of states is discrete (as in the example of the previous section) then ®,(-) represents
a transition probabilities. Let 7 represent a Markov policy, namely a stopping time, and let
7T be the set of possible Markov policies. Every policy 7 generates a future stream of payoff
whose expected present value is captured by the value function V. The problem of finding
the value of the American put can hence be reduced to the problem of finding the optimal
stopping strategy that maximize the present value of the payoff to the investor. In other
words we need to solve the following problem:

Vo' = maxVy (3)
Since the rewards in our problem are bounded and the action space is compact (binary
decision), a key result in dynamic programming® allows us to state that the solution of the

*See Puterman (1994), Ch. 4.
®See Puterman (1994), Ch. 4.4.



above problem is given by solving recursively the optimality equations:
1
‘Jt*(gt) = maX{I — S¢, TEt[‘/tfi—l(st‘}'l)]} t = 0, 17 ..N =1 S € S (4)
7

with boundary condition
Vi(sny) = max{l — sy,0}, sy €S (5)

Equation (4) is the Bellman Fquation for our problem. A glance at (4) tells us that the
result obtained in the previous section, somewhat intuitively, perfectly fits into the theoretical
framework of the Bellman’s Principle of Optimality:

“an optimal policy has the property that, whatever the initial action, the remain-
ing choices constitute an optimal policy with respect to the subproblem starting
at the state that results from the initial actions.” (Bellman, 1957, p.83).

Here the optimality of the remaining choices ay41, @442 ...an—1 is subsumed in the continu-
ation value, so only the immediate action a; remains to be chosen.

Comparison with Contingent Claim Analysis

In the traditional contingent claim approach in finance, the solution (3) to the Bellman
equation is referred to as the no-arbitrage price for an American put. In order to see it is
assumed that market are complete, that is, the payoff of any new security introduced in the
market can be replicated or “synthesized” by using combination of existing securities. In
this perspective we can see the American put as a security that pays a “dividend” 67 when
the investor decides to exercise it (time 7) and nothing when he decides to keep it alive.®
A solution 7* to (3) is a rational exercise policy for the American put in the sense that it
maximizes the initial arbitrage-free value of the security.

The main insight from contingent claim analysis is that the initial arbitrage-free value of
must be V', the value of the security with an optimal exercise strategy. To prove this, suppose,
by contradiction, that Vj > V;,. In this case an investor can buy an American put at price
Vo, adopt for it a rational exercise policy (i.e. exercise the put at time 7*) and replicate the
dividend process —67". This is possible because we assumed complete markets and the cost of
this replicating strategy is, of course, — V. As a result the investor is making an initial profit
of Vi — Vi and is perfectly matching the future dividend stream, an arbitrage. Conversely,
suppose that Vo > V. Then one could sell the American put for Vy. By assumption, the
dividend process 67 generated by this option can be synthesized by a trading strategy whose
initial cost is V7. Moreover, by (3) and by assumption, V7 < Vj* < V. Therefore we end up
with an initial profit of Vy — V7 > 0 and no further dividends, an arbitrage.

5This view allow a large level of generality in analyzing securities in a financial market: every security
can in fact be identified as with the stochastic process of the dividends it generates through time. See Duffie
(1995).



Structure of the optimal policy

By looking at a simple property of V* we can provide the structure of the optimal policy in a
multi-period setting. The following results represent a straightforward generalization of the
structure of the optimal policy shown in section 2.

From equations (4) and (5) it is clear that for some values of s; termination will be optimal
and for other values continuation will be optimal. In our earlier example there was a single
cutoff level s* = 7.058 with exercise optimal for s < s* and non exercise optimal for s > s*.
Although it is true that I — s is decreasing in s; and therefore continuation seems plausible
for large values of s;, for arbitrary specification of ®,(:|-) the shape of the continuation and
stopping regions could be any sequence of alternating intervals. However, if the distribution
®4(-|-) exhibit first-order stochastic dominance, in the sense that the cumulative probability
distribution ®;(s;41]s;) of future prices syyq shifts to the right when the current value of s;
increase, then the optimal policy preserve the “monotonicity” structure we observed in our
earlier example. Before proving this we need the following preparatory lemma.

LEmMMA 3.1. If the cumulative probability distribution function ®,(:|-) exhibits first-order
stochastic dominance and the conditional expected value of the increment Fy[s;1q1 — s¢] is
nonincreasing in s;, then V;*(s¢) 4 s; is increasing in s;.

Proor: Since V3 (Sy) = max{/ — sy, 0} the result is obvious for ¢ = N. Suppose now that
Vi*(s¢) + s¢ is increasing for ¢ + 1, 4+ 2,..., N. Then, from equation (4)

1 1 1
‘/t*(st) + St = Imax {I, mEt[‘/{i}_l(St-}—l) —|— St+1] — mEt[SH_l — St] + 1 —|— iSt} .

By the induction hypothesis,

Vi (se41) + se41
is increasing in s¢41. Since ®(-|-) exhibits first-order stochastic dominance, Ey[V (s¢41) +
sep1] = [(Vipa(Se41) + S041)d®(s441]8¢) is increasing in sq. By assumption, Fi[siq — s¢] is
nonincreasing in s; and therefore the result follows. |

REMARK. We note that, if markets are efficient, i.e. if the discounted prices of underlying
assets are a martingale, then the restriction we imposed on the conditional expected value
FEi[s141 — 8] is satisfied.

The following proposition gives the explicit structure of the optimal policy.

ProposiTiON 3.2. The optimal exercise policy for the American put has the following form:
There are increasing values of the underlying prices

* * *
sP<sh << sy

such that at time ¢ it is optimal to exercise the option if and only if s; < s}

Proor: If the price of the underlying asset at time ¢ is s; then, from equation (4) it is
optimal to exercise the option if
‘/t*(st) S I— St.



Let
s; =mind{s; : V' (s¢) = I — s¢}.

By Lemma 3.1 it can be seen that, for s; < s},
Vils) +se S Vi(s)) + s =1

which shows that it is optimal to exercise the option if at time ¢ the price s; of the underlying
asset is below the threshold s}.

That s} is increasing in ¢ follows from the fact that V,* is nonincreasing in ¢. This is
immediate because having less time to decide whether to exercise or not cannot increase
one’s expected profit. O

The result of the above theorem can be interpreted as follows: the further away an investor is
from the expiration of the option the more “exigent” he is towards the underperformance of
underlying securities (i.e. s} is the lowest threshold value). As time of expiration approaches
he becomes “less exigent”, committing himself to an exercise threshold increasing through
time.

REMARK. We point out that the condition of first-order stochastic dominance driving the
above results is true for most of the stochastic processes assumed in the finance literature:
random walks, Brownian motion, mean-reverting autoregressive processes and, indeed, in
almost all economic applications we can think of.

4 Continuous Time

We will try to provide in this section an intuitive derivation of the continuous-time version
of the above model for pricing an American put. Far from being complete, the analysis aims
to focus on the intuition driving the main results.

Let us consider the general finite horizon problem stated above, but suppose each time
period is of length At. Ultimately we are interested in the limit where At goes to zero and
time is continuous. Let p be the discount rate per unit of time, so that the total discounting
over an interval of length At is given by the factor 1/(1 4 pAt). We rewrite the Bellman
equation (4), by explicitly considering V* a function of the state s and of time #:

1

V*(Sjt) = maX{I — S, TpAt

BVt + A0]s]}

where s and s’ represent the state of the system at time ¢ and ¢ + At respectively. As At goes
to zero one may be tempted to guess that the Bellman equation for our optimal stopping
problem becomes:

* 1 %
Vv (s,t)_max{f—s,rpth[‘/ (s—l—ds,t—l—dt)|s]}. (6)



This passage from discrete to continuous time is very casual and heuristic and it is fair to warn
the reader that some quite tricky issues are hidden, and must be handled carefully in more
rigorous treatments. In discrete time we stipulated that the action a; taken in the current
period ¢ could depend on the knowledge of the current state s;, but not on the random future
state s;y1. In continuous time the two coalesce. We have to be careful not to allow choices
to depend on information about the future, otherwise we would be acting with the benefit
of hindsight and could make infinite profits. Technically this is avoided in continuous time
model by assuming that the uncertainty is “continuous from the right” in time, while the
strategies are “continuous from the left”. Then any jumps in the stochastic process occur at
an instant, while the actions cannot change until just after the instant.” Moreover, although
the passage from At to dt seems harmless, a big step has been omitted. The limit on the
right-hand side of the above expression in At depends on the expectation corresponding to
the random state s’ at time ¢ + At. The big problem now is the structure of the continuous
time stochastic processes that allows such limits in a form conducive to further analysis. A
class of process that are particularly useful for many finance applications is represented by [to
processes. Ito processes play a crucial role in the finance literature of continuous time; most
of the original results in continuous time asset pricing, in fact, have been derived assuming
this kind of stochastic processes. Although our aim here is not to investigate properties of
these processes, we will try to analyze in the next subsection the structure of our problem
when the state variable is assumed to evolve continuously in time according to an Ito process.

Ito Processes

The building block of an Ito process is represented by Brownian Motion. Brownian motion
—also called Wiener process— is a continuous-time stochastic process with three important
characteristics. First, it is a Markov process, i.e. the probability distribution for all future
values of the process depends only on its current value and is unaffected by past values of
the process or by other current information. Second, the Brownian Motion has independent
increments: this means that the probability distribution of the process over any time interval
is independent of any other non overlapping time interval. Third, changes in the process over
any finite interval of time are normally distributed with a variance that increases linearly with
the time interval.

These three conditions may seem at first glance quite restrictive for modeling real-world
variables such as stock prices. In fact while it probably seems reasonable that stock prices
satisfy the Markov property and have independent increments, it is not reasonable to assume
that price changes are normally distributed since this can lead to the paradox of having
negative stock prices. However, through the use of suitable transformations, the Brownian
motion can be used as a building block to model an extremely broad range of variables that
vary continuously and stochastically through time.

We now restate the above property of Brownian motion more formally. If z(¢) is a Brow-
nian motion, than any change in z, Az, corresponding to a time interval At, satisfies the

"See Duffie (1988).
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following conditions:

1. The relationship between Az and At is given by
Az = €t\/xt,

where ¢ is a normally distributed random variable with mean of zero and standard
deviation of 1.

2. The random variable ¢, is serially uncorrelated, that is, E[e;e5] = 0 for t # s. Thus the
values of Az for any two different intervals of time are independent. This means that
z(t) follows a Markov process with independent increments.

By letting A become infinitesimally small, we can represent the increment of Brownian mo-
tion, dz, in continuous time as

dz = epVdl. (7)

Since € has zero mean and unit standard deviation, E[dz] = 0 and E[(dz)?] = dt. Note,
however, that Brownian motion has no time derivative in a conventional sense; Az/At =
et(At)_l/Z, which becomes infinite as At approaches zero. This last property is at the origin
of the theory of “differentiation” for this kind of stochastic process which is known as [to
calculus and that plays a crucial role in large part of finance literature of continuous time.
We mentioned earlier that the Brownian motion is the main building block in the con-
struction of the more general Ito processes. We say that a random variable s follows an Ito
process if its evolution through time is given by the following generalization of expression (7):

ds = a(s,t)dt + b(s,t)dz (8)

where dz is the increment in the Brownian motion, and a(s,?) and b(s,t) are known (non
random) functions of s and 1.

Let us consider the mean and variance of the increments of this process. Since E[ds] = 0,
E[ds] = a(s,t). The variance of ds is equal to E[(ds)?] — (E[ds])? which contains terms in dt,
in (dt)? and in (dz)(dt), which is of order (dt)*/%. For dt infinitesimally small, terms in (dt)?
and in (dt)3/2 can be ignored, and, to order dt, the variance is

Varlds] = b*(s, ).

The term a(s,t) is usually referred to as drift rate of the Ito process, while the term b2(s, 1)
is the instantaneous variance rate.

Referring back to our problem of pricing an American put we will assume that the price
of the underlying asset, s, follows an Ito process of the form given in equation (8). A closer
look at the Bellman equation (6) for the optimal stopping problem we derived above, tells us
that, in order to deal with the case of continuous time, we must be able to take differentials
of the value function V(s,?) with respect to s and t. While the differentiation with respect
to t does not create problems, the differentiation with respect to s cannot be performed
with usual calculus technique. The reason, mentioned above, is that s is a random variable

11



which follows a stochastic process which is nowhere differentiable. Fortunately the theory of
differentiation for functionals of Ito process is well established and allows us to complete our
analysis of the optimal stopping problem. The main result in the theory of differentiation of
functionals of Ito process is Ito’s Lemma.

Ito’s Lemma is easiest to understand as Taylor series expansion. Suppose s(t) follows the
process of equation (8), and consider a function V(s,?) that is at least twice differentiable in
s and once in ¢. Ito’s Lemma gives the differential dV as

A% A% 10%V

_ oV oV L 2
dV = 8Sd.s—l— T dt+2—852 (ds)*,

or, substituting equation (8) for ds:

_ Jov vV 1, RV v
d‘/ = W —|— a(S,t)adS —|— 5[) (S,t)m dt —|— b(Sﬂf) 85

dz (9)

We are now ready to provide the continuous version of the optimal stopping strategy derived
in section 3. In analogy with the above results we can state that, in a continuous framework,
the optimal policy will be characterized by a time-varying critical threshold s*(t) for the stock
price. We can interpret the critical values s*(t) for various ¢ as forming a curve that divides
the (s, 1) space into two regions, with continuation (no exercise of the option) optimal above
the curve and stopping (exercise of the option) optimal below it. Of course we do non know
the equation of the curve s = s*(¢) in advance, but must find it out as part of the solution of
the dynamic programming problem. This problem is referred to in the predominant literature
as a free-boundary problem.

The Bellman equation for our optimal stopping problem is (6), which we repeat here for
ease of reference:

V*(s,t):max{f—s, E[V*(s—l—ds,t—l—dt)|5]}.

14 pdt
In the continuation region, the second term on the the right-hand side is the the larger of the
two. Applying Ito’s Lemma to the value function V* we obtain:

ov* ov>

0V *
ot +als;?) 0s

0s?

1
EV*(s+ds,t+ dt)|s] = V*(s,t) + [ ds + 5[)2(5,15) ] dt + o(dt)
where we used the fact that F[dz] = 0. Using the above expression in the Bellman equation we
can easily derive the following partial differential equation (valid in the continuation region)
that the value function must satisfy:
0*V* ta(s t)(?V* i A%
0s? 7 0s ot

As mentioned, this holds for s > s*(¢), and we must look for boundary conditions that hold
along s = s*(¢). From the Bellman equation, we know that in the stopping region we have
V*(s,t) = I — s, therefore, by continuity, we can impose the condition

V*(s*(t),t) =1 —s"(t) Vit (11)

1
§H@¢) - pV* = 0. (10)
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This is often called the value-matching condition since it matches the values of the unknown
function V*(s,t) to those of the known termination payoff function I — s. An intuitive
explanation of (11) proceeds as follows. Suppose, by contradiction that V*(s*(¢),¢) < I —
s*(t). By continuity, we will have V*(s,t) < I — s for s just slightly to the right of s*(¢). By
Ito’s Lemma, for sufficiently small dt the continuation value in the Bellman equation (6) will
be less than I — s for s slightly greater than s*(¢). Then, immediate stopping will be optimal
for such s, contrary to the definition of s*(¢). The argument for V*(s*(¢),t) < [ — s*(t)
proceeds similarly.

As we mentioned, the boundary s*(¢) is itself unknown, in other words, the region in the
(s,t)-space over which the partial differential equation (10) is valid is itself endogenous. It
is therefore clear that we need a second condition in addition to (11) if we are to find s*(¢)
jointly with the function V*(s,?). The general mathematical theory of partial differential
equation is of little help here and the conditions applicable to free boundaries are specific for
each application. In our case the right condition requires that for each ¢, the values V*(s, )
and I — s, regarded as function of s should meet tangentially at the boundary s*(¢), or

%
L(S’t) -1 (12)
0s s=s*(1)
This is called the smooth-pasting condition because it requires not just the values but also the
derivatives of slopes of the two functions to match at the boundary. An intuitive explanation
of this condition can be obtained by thinking of the payoff schedule of a put option as a
function of the underlying price s. If, by contradiction, the functions I — s and V*(s,t) do
not meet tangentially in s*(¢) then they must form a “downward-pointing” kink.® If this were
the case, s*(¢) cannot be a point of indifference between the choice of exercise the option or
waiting. It can be proved, in fact, that waiting for a short interval of time At is definitely the
better policy. The intuitive idea is that by waiting a little bit longer, the investor can observe
the next step of the price s and choose position on each side of the kink. This means that
the value now of the position that the investor will take in At instants is the expected value
of the positions on either sides of the kink. Since the expected value is a linear operator, the
average of the two positions does better than the kink point itself. This is true even though
this average must be discounted because it occurs At instant later. The reason is that, as
we mentioned, for Brownian motion the steps As are proportional to v/At, and so is their
effect on the value, while the effect of discounting is proportional to At. When At is small
the former effect is relatively much larger and we obtain the required contradiction.?
Equation (10), together with the value-matching and smooth-pasting conditions, com-
pletes the description of the problem of the value of the American put option in a continuous
time framework when the underlying asset price follows an Ito process. The time-varying
threshold s*(¢) turns out to be an increasing function of ¢, in perfect analogy with the result
derived in proposition 3.2.1° It is important to highlight that, although the above derivation

81t may be helpful to think of the example in section 2.
®For a formal derivation of these arguments, see Dixit (1991).
1%See Duffie (1995).
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required a tedious analysis of formal details, the intuition and the logic of the solution is the
same we followed in the simple case of a discrete time two-period model of section 2. This
section should also warn the reader of the level of complexity to which this problem can lead
when we assume alternative stochastic processes for which there does not exist a richness of
results as in the case of Ito processes. The analysis of these issues is however outside the
purpose of this paper.

5 Conclusions

In this paper we presented a Dynamic Programming approach to the pricing of an American
put option. Starting from a very simple example we have shown how the basic concepts
of Dynamic Programming can be extensively interpreted under the perspective of the more
traditional Contingent Claim Analysis approach to pricing derivative securities. In particular
it has been shown how the solution of the Bellman equation defining the optimal stopping
problem for an American put can be directly interpreted as the arbitrage-free value of this
claim that would prevail in a complete financial market.

The Dynamic programming approach to pricing derivatives securities is not new in the
finance literature but is definitely less developed that the more exploited Contingent Claim
Analysis approach. The extreme flexibility and the naturalness with which the main results
in this paper have been derived leaves room for an extensive application of these technique
in finance. Indeed, the trend in ongoing research seems to be in this direction.

We believe that the theory of Markov decision process can provide interesting insights
in the solution of many existing puzzle in theoretical finance. Setting aside the natural
extensions to the above results to the case of dividend-paying securities and transaction
costs, we believe that one of the most interesting directions for further research is the whole
literature concerning “exotic” options. These class of options are characterized by the fact
that the payoff at the exercise date may depend on some functionals of the history of the
underlying price. By a suitable definition of the state space we think it is possible to embed the
problem of pricing exotic options in the class of Markov decision problems which can capture,
with sufficient flexibility, the essence of the pricing problem for these instruments. There is
apparently no evidence in the literature of any attempt to deal with these problems under the
perspective of Markov Decision Processes and we believe that, although it is challenging and

with highly uncertain outcome, this is definitely an exciting research topic worth investigating.

Nothing original has been derived in this paper, however we hope that the exercise of
“looking things from a different perspective” has been useful to unveil one of the many fields
in which Dynamic Programming can provide a substantial and persistent contribution.

Appendix

We proof that it is never optimal to exercise early an American call option on a non-dividend-paying stock.
Consider the following two portfolios at time ¢:

o Portfolio A: one American call option on one share with exercise price I plus a discount bond that will
be worth [ at time T

e Portfolio B: one share with value S.
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Let 1 > 0 be the period interest rate. The value of the discount bond at time ¢ 1is [ - (1 + i)_(T_t). If the call
option were exercised at time ¢, the value of portfolio A would be

S—T+41-(144)~F9,

This is always less than S when ¢t < T' since 1+ > 0. Portfolio A is therefore worth less than portfolio B if the
call option is exercised prior to maturity. If the call option is held to maturity, the value of portfolio A at
time 7' is
max[0, St — I] + I = max[St, I]

where St is the price of the stock a time 7. The value of portfolio B at time T is St. As long as there is
some chance that St < I, portfolio A is always worth at least as much as portfolio B.
Therefore, portfolio A is worth less than portfolio B if the option is exercised immediately, but it is worth at
least as much as portfolio B if the holder of the option delays exercise until maturity. It follows that a call
option on a non-dividend-paying stock should never be exercised prior to maturity and its value corresponds
to the value of an European call option on the same stock.

The argument above does not old for American put options on non-dividend-paying stocks. Indeed, at any
time during its life a put option should be exercised if it is sufficiently in the money. Consider the following
two portfolios:

e Portfolio C: one American put option on one share with exercise price I plus one share with value S
e Portfolio D: a discount bond that will be worth I at time T

If the option is exercised at time ¢ < T' portfolio C becomes worth I while portfolio D is worth I-(1 +i)_(T_t).
Portfolio C is therefore worth more than portfolio D. If the put option is held to maturity, portfolio C becomes
worth

max[] — S7,0] + St = max[I, St7]

while portfolio D is worth I. Portfolio C is therefore worth at least as much as, ad possibly more (if the put

option is exercised early), than portfolio D.
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