A comparative study on feedforward and recurrent neural
networks in time series prediction using gradient descent learning

Manfred Hallas, Georg Dorffner
Austrian Research Institute for Artificial Intelligence
Schottengasse 3, A-1010 Vienna, Austria
and
Dept.of Medical Cybernetics and Artificial Intelligence, Univ. of Vienna

email: georg@ai.univie.ac.at

Abstract

This paper reports about a comparative
study on several linear and nonlinear feedfor-
ward and recurrent neural networks trained
on artificially created time series. This has
lead to interesting empirical results about
the capabilities of these network models
trained with a gradient descent learning pro-
cedure. Several of the time series were gener-
ated by some of the neural network models,
in order to test whether they could learn to
predict a time series which they could theo-
retically perfectly model. The results show
that recurrent networks do not seem to be
able to do so under the given conditions.
They also show that a simple feedforward
network (a nonlinear autoregressive model)
significantly performs best for most of the
nonlinear time series. These empirical re-
sults can be taken as valuable hints with re-
spect to the practical application of neural
networks in prediction tasks.

1 Introduction

Feedforward and recurrent multilayer perceptrons
(e.g. of the so-called Jordan and Elman type — see
[Bengio, 1995] or [Dorffner, 1996] for an overview)
are popular neural networks for complex time series
processing tasks, such as forecasting in financial ap-
plications [Weigend et al., 1991; Refenes et al., 1994;
Trippi & Turban, 1993]. They are applied due to their
strength in handling non-linear functional dependen-
cies between past time series values and the estimate
of the value to be forecast. Training is usually done
by minimizing the summed squared error criterion.
While efficient optimization methods like conjugent
gradient or quasi-Newton methods are well-known,
simple gradient descent procedures (“backpropagation
learning”) are still the most widely used learning rules.

Relatively little is known about the practical ap-
plicabilities and limits of the above-mentioned neural
network types for a given time series (a notable excep-
tion is a similar study by [Horne & Giles, 1995, who,
incidentally, also focus on gradient descent learning).

Therefore, few authors justify their use of a partic-
ular network other than by presenting comparative
results. Among the important questions, still largely
unanswered in practical terms, are the following:

e When does a nonlinear method (in particular, a
non- or semi-parametric method like neural net-
works) actually achieve better results than clas-
sical linear methods (e.g. linear ARMA or state-
space models)?

e When should recurrent networks be applied, as
opposed to feedforward neural networks with time
window input?

e Can gradient descent learning exploit the theo-
retical capacity of feedforward or recurrent mul-
tilayer perceptrons in forecasting?

e Can a neural network trained by gradient descent
achieve optimal performance on a time series pro-
duced by the network itself as the generator?

Especially the last question, which — when succes-
fully answered — should shed some light on the capa-
bilities and limits of the models, lead us to design the
comparative study reported here. We were interested
in exploring whether different neural network types
could optimally identify a model behind a time se-
ries if the network could theoretically implement that
model perfectly. By also letting each network type
identify the model behind the time series produced by
all the other networks, and that of additional artificial
series, one obtains empirical results about the capabil-
ities of the networks faced with non- linear time series
under controled conditions. Thus, we expected partial
answers to the other questions raised above, as well.

2 Methods and data

2.1 Neural networks

The following eight networks, including 2 linear
ones (roughly corresponding to classical autoregressive
models) were compared. To leave as many parameters
constant as possible, all networks were sought to have
approximately the same number of degrees-of-freedom
(weights), namely between 220 and 250.

e SLAR: a single layer perceptron with an input
window of size 220 (identical to a linear AR(220)
autoregressive model)

- Lifxlu. @4 UVVU_lCl/‘)/Cl PCL\/CPULUII ¥vivuvlil il llllJLllJ ¥V iii—
dow of size 20 and a hidden layer of 10 linear
hidden units (a multilayer version of a AR(20)
model)

e NAR: a two-layer perceptron with an input win-
dow of size 20 and 10 nonlinear hidden units with
sigmoid activation functions (a general nonlinear
NAR(20) autoregressive model)

e JORDAN: a Jordan-type recurrent perceptron
(based on the one proposed in [Jordan, 1986])
with an input of size 1, a sigmoidal hidden layer
of size 55, and a feedback from the output unit to
an extra context layer with a self-recurrent loop.

e JORDAN2: a Jordan-type recurrent perceptron
with an input of size 1, two sigmoidal hidden lay-
ers of size 13 each, and a feedback from the output
unit to an extra state layer with a self- recurrent
loop.

ELMAN: an Elman-type recurrent perceptron
(based on the one proposed in [Elman, 1990])
with an input of size 1, a sigmoidal hidden layer
of size 14, and a feedback from the hidden layer
to an additional context layer of size 14 with self-
recurrent loops.

ELMAN2: an extended Elman-type recurrent
perceptron with an input of size 1, two sigmoidal
hidden layers of size 8 each, a feedback from the
output to an additional state layer of size 1 (with
feedforward connections to the output layer), a
feedback from the second hidden layer to an ad-
ditional context layer of size 8 (feedforward con-
nections to the second hidden layer), and a feed-
back from the first hidden layer to an additional
context layer of size 8 (feedforward connections
to the first hiddenlayer). All state and context
layers had self-recurrent loops.

e MRN: a multi-recurrent network [Ulbricht, 1994],
which is a mixed Jordan- and Elman-type recur-
rent perceptron, with an input of size 1, a sig-
moidal hidden layer of size 10, a feedback from
the output to a first state layer with weight 0.75,
and a self-recurrent loop with weight 0.25, an ad-
ditional feedback from the output to a second
state layer with weight 0.25 and a self-recurrent
loop with weight 0.75, a feedback from the hid-
den layer to a first context layer of size 10 with
weights 0.75 and self-recurrent loops with weights
0.25, and a feedback from the hidden layer to a
second context layer of size 10 with weights 0.25
and self-recurrent loops with weights 0.75. (For a
justification of this type of network, see [Ulbricht,
1994].)

Except for MRN, all feedback connections were one-
to-one connections with weights equal to 1, and self-
recurrent loops possessed a weight equal to 0.6.

Compared to traditional approaches to time series
analyses, these networks are rather large, especially
the linear AR models. On one hand we considered
the number of degrees-of-freedom as an important pa-
rameter to be held constant, mainly because vis a vis

vt duaaaiulr UL vl @1111116 uauvd A 1dll \,Ullll}allbull Cl/lJlJCCl/lD
to be possible. On the other hand this means that
the nonlinear neural networks are rather on the non-
paramteric side of model estimation and could there-
fore theoretically exploit their full potential of nonlin-
ear approximation.

2.2 Training sequences

The following training sequences were artificially cre-
ated:

e Sin-AM: an amplitude-modulated sine wave

e Chaos: a chaotic time series using the logistic
equation z(t + 1) = az()(1 — z(¢t)) with 2y =
0.2027 and a = 4

e QLAR: a quasi-linear time series generated by
the NAR network in its quasi-linear range (using
small intial weights)

e NAR: a non-linear time series generated by the
NAR network (with random weight initialization)

e three more non-linear time series generated by
th JORDAN2, ELMAN2 and MRN networks, re-

spectively, with random weight initialization.

From each model, ten non-overlapping time series
of length 2000 were created.

2.3 Training of the networks

Each of the eight network model was trained on each of
the seven time series in 20 different runs, with a learn-
ing rate equal to 0.2 (except for the two linear net-
works, where it was set to 0.01). The 20 runs consisted
of two different weight initializations and ten different
training sets. Prior to these runs, ten different runs
with different weight initializations were performed on
each network. The initialization that yielded the best
result, and the initialization that was closest to av-
erage performance were selected as the two initializa-
tions in the actual 20-time cross-evaluation runs. The
training sets consisted of the first 1000 data points in
each of the non-overlapping time series created (thus
outnumbering the number of weights by about a factor
of 4). Training was halted by an early-stopping proce-
dure by using a random 10 % of the training patterns
used as a validation set (or, alternatively, after 10000
epochs). All weight initializations were in the range
of [-1,1], except for the linear networks, where it was
[-0.1,0.1].

After training, 500 of the remaining 1000 data
points of each time series were used for testing pre-
diction performance with a time-lag of 1. The mean
squared error over those 500 points was recorded. For
the recurrent networks, 100 data points were used to
build up the context and state layers before evaluating
each prediction.

3 Results

Tables 1 through 3 summarize the results of the 20
runs for each network and each time series. Means
and standard deviations of the mean squared error
are depicted. The best results for each sequence are

9.91e-06

SLAR HASE 8.4e-06
omse || 4.12e-06 | 7.88e-06
TAR fase || 0.000151 | 9.1e-06
omse || 3.56e-06 | 6.1e-07
NAR fase || 2.65e-05 | 9.29¢-06
omse || 4.05e-06 | 1.64e-06
JORDAN pase || 0.0001%6 0.0128
omse || 2.06e-05 | 0.00337
JORDANZ pase || 0.000155 0.0073
omse || 1.96e-05 | 0.00137
ELMAN farse || 0.00172 0.0811
omse || 0.00564 0.157
ELMAN2 jiase || 0.00181 0.0263
oumse || 0.00268 0.0159
MRN farse || 0.00466 0.0163
OMSE 0.0115 0.0233

Table 1: Results from 20 training runs on two time se-
ries (amplitude modulated sine wave and quasi-linear
AR process; mean g and standard deviation o of the
MSE are depicted)

highlighted (bold face script). Each of these results
was significantly better than the remaining network
results (p < 0.001 in a performed t-test).

4 Discussion

Several important conclusions can be drawn from this
comparative study:

e Whenever a time series can be sufficently de-
scribed by a linear model (such is the case for the
SinAM and the quasi-linear NAR series), among
the nonlinear networks only the feedforward NAR
model comes close to optimal performance, while
all recurrent neural networks result in signifi-
cantly sub-optimal predictions. Therefore, one
can conclude that those recurrent networks do
not easily contain the linear case and thus should
only be applied when there is sufficient evidence
for a particular nonlinear process.

e Except for the feedforward NAR model, none of
the nonlinear neural networks was able to opti-
mally estimate its own time series, even though
they could theoretically perfectly implement the
underlying model. This points to additional lim-
its of the recurrent networks.

e In most nonlinear cases, the simple feedforward
NAR model yielded significantly better results
than the other nonlinear neural networks. This
stands in interesting contrast to the findings in
[Horne & Giles, 1995], where recurrent networks
consistently outperformed feedforward networks
in the tasks of finite state machine induction and
nonlinear system identification.

e In the case of the chaotic time series, the vari-
ants of Jordan-type networks yielded the best re-
sults (especially JORDAN2). This points to a
certain effectiveness of this kind of network in
temporal processes whose underlying model has

SLAR UASE 0.856 0.0913
LAR AASE 0.127 0.0256
OMSE 0.00412 0.00628
NAR UASE 0.00201 | 0.000996
oamse || 0.000259 | 0.000816
JORDAN pasg || 0.000277 0.0766
omse || 4.99e-05 0.00629
JORDAN2 s || 6.37e-05 0.071
omse || 2.35e-05 0.00583
ELMAN AASE 0.0514 0.0768
OCrSE 0.084 0.045
ELMAN2 puse 0.0156 0.0821
OCrSE 0.0299 0.003
MRN AASE 0.00211 0.0841
OMSE 0.00266 0.0647

Table 2: Results from 20 training runs on two time se-
ries (chaotic logisitic equation and nonlinear AR pro-
cess; mean p and standard deviation ¢ of the MSE are
depicted)

[Net [JORDAN2 | ELMAN2 | MREN |
SLAR LMSE 0.0644 0.181 0.661
CMSE 0.0626 0.195 0.805
LAR AMSE 0.00761 0.00803 0.0107
SMSE 0.000852 0.00201 0.00192
NAR AMSE 5.08e-05 0.00508 | 0.00037
oMSE 3.24e-05 0.00101 0.000115
JORDAN AMSE 0.048 0.0134 0.00516
ocMSE 0.0568 0.0114 0.000373
JORDAN2 uprsgp 0.0158 0.0113 0.00492
CMSE 0.032 0.00917 | 0.000588
ELMAN AMSE 0.0288 0.0413 0.00452
CMSE 0.0674 0.07 0.00201
ELMAN?2 AMSE 0.00747 0.0238 0.00308
CMSE 0.0155 0.0211 0.00248
MRN AMSE 0.0326 0.0875 0.00386
CMSE 0.0637 0.169 0.00185

Table 3: Results from 20 training runs on the remain-
ing three time series (generated by the networks JOR-
DAN2, ELMAN2, and MRN; mean g and standard
deviation o of the MSE are depicted)

a first order iterative generator. This is some-
what surprising, since the feedfoward NAR net-
work apparently more directly implements such a
first-order process but nevertheless achieves sig-
nificantly worse results.

Of course, all results have to be seen against the
background of using gradient descent as a learning
procedure. Thus, all perspicuous limits are obviously
limits of this kind of learning (compare [Horne & Giles,
1995], p.700).

One can conclude from these results that for un-
known underlying nonlinear characteristics of a time
series, the feedforward NAR model appears to be most
likely to lead to satisfying results. In [Dorffner, 1996]
it has been shown that Jordan-type neural networks
resemble a version of a nonlinear autoregressive mov-
ing average (NARMA) model (see also [Connor et al.,
1992]). In our case, both Jordan-type networks imple-
ment NARMA(1,1) models (with the extension of self-
recurrent loops at the state layer). Thus it is no sur-
prise that they have difficulties in modeling sequences

i llléllcl Ulucl’ Uil A uvilu LY 4aivu DC\{L{CII\»C. Vl,llJlJLllJ
feedback, even with self-recurrent loops, does not re-
place a time window.

In the case of the Elman-type networks one at first
sight would expect better performance in modeling
higher-order sequences. (Note that in literature, hid-
den layer feedback is frequently depicted as incorpo-
rating potentially unlimited memory about the past.)
In [Dorffner, 1996] it was shown that an Elman-type
network is a slight modification (but not a general non-
linear extension) of the classical state-space model of
time series analysis. Thus it inherently bears limits
with respect to handling general nonlinear time se-
ries models. Given the generally poor results of the
ELMAN network this seems to be confirmed. The
ELMAN2 network comes more closely to a nonlin-
ear state-space model given its additional hidden layer
(by which it implements a nonlinear functional depen-
dency between the state layer and the output). How-
ever, even though better in some cases, the perfor-
mance is equally poor pointing to a deeper reason for
the network’s limitations.

One can also conclude that with respect to recurrent
neural networks, more efficient learning procedures are
needed. This has been pointed out before by [Ben-
gio, 1995). Backpropagation in time, second-order or
global optimization procedures like simulated anneal-
ing or genetic learning might lead to a more optimal
exploitation of the networks’ capabilities.

Another comment is in place. All generated time
series used in this study are deterministic ones with
no noise added, whereas real-world problem almost
exclusively deal with stochastic series. Therefore one
must be careful in transferring our results to real fore-
casting applications.

5 Conclusion and future work

The results from the comparative study point to se-
rious limitations of recurrent neural networks applied
to nonlinear prediction tasks, when gradient descent
learning is applied. An interesting exception are
Jordan-type networks applied to series generated by a
first-order iterative process, even if it exhibits chaotic
behavior. Although a study of this kind leaves many
questions open (and partly stands in contrast to ear-
lier studies [Horne & Giles, 1995]), it can be used as
guidelines for future work.

Our ultimate goal is to identify optimal neural net-
works to model real-world financial time series. For
that, the next step is to compare the characteristics
of such series (through so-called stylized facts) with
the characteristics of the series generated here under
controled conditions. Additionally, a major emphasis
will be put on adding different noise models to create
truly stochastic time series. Together with theoretical
analyses, we envision such empirical studies to lead to
further insights into the complex behavior of sequen-
tial processes.

LA AaiIYio vy

This work was done as part of the project SFB 10
“Adaptive Models in Economics and Management
Science”, funded by the Austrian Fund for Scien-
tific Research, FWF. We thank Kurt Hornik, Helmut
Strasser, Manfred Deistler, and Adrian Trapletti for
helpful comments. The Austrian Research Institute
for Artificial Intelligence is supported by the Austrian
Federal Ministry of Science and Transport.

References

[Bengio, 1995] Bengio Y.: Neural Networks for Speech
and Sequence Recognition, Thomson, London,

1995.

[Connor et al., 1992] Connor J., Atlas L.E., Martin
D.R.: Recurrent Networks and NARMA Model-
ing, in Moody J.E., et al.(eds.), Neural Informa-
tion Processing Systems 4, Morgan Kaufmann,

San Mateo, CA, pp.301-308, 1992.

[Dorffner, 1996] Dorffner G.: Neural networks for
time series processing, Neural Network World,

6(4)447-468, 1996.

[Elman, 1990] Elman J.L.: Finding Structure in
Time, Cognitive Science, 2(14)179-212, 1990.

[Horne & Giles, 1995] Horne B.G., Giles C.L.: An
Experimental Comparison of Recurrent Neural
Networks, in Tesauro G., et al.(eds.), Advances
in Neural Information Processing System 7, MIT

Press, Cambridge, MA | pp.697-704, 1995.

[Jordan, 1986] Jordan M.I.: Serial Order: A Parallel
Distributed Processing Approach, ICS- UCSD,
Report No. 8604, 1986.

[Refenes et al., 1994] Refenes A.N., Zapranis A.,
Francis G.: Stock Performance Modeling Using
Neural Networks: A Comparative Study with Re-
gression Models, Neural Networks, 7(2), 375-388,
1994.

[Trippi & Turban, 1993] Trippi R.R., Tur-
ban E.(eds.): Neural Networks in Finance and
Investing, Probus, Chicago, 1993.

[Ulbricht, 1994] Ulbricht C.: Multi-Recurrent Net-
works for Traffic Forecasting, in Proceedings of
the Twelfth National Conference on Artificial In-
telligence, AAAI Press/MIT Press, Cambridge,
MA, pp.883-888, 1994.

[Weigend et al, 1991]
Weigend A.S., Rumelhart D.E., Huberman B.A.:
Generalization by Weight- Elimination with Ap-
plication to Forecasting, in Lippmann R.P.; et
al.(eds.), Advances in Neural Information Pro-
cessing 3, Morgan Kaufmann, San Mateo, CA,
1991.

