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Abstract

This paper investigates the Multifractal Model of Asset Returns, a
class of continuous-time processes that incorporate the thick tails and
volatility persistence exhibited by many financial time series. The sim-
plest version of the model compounds a Brownian Motion with a mul-
tifractal time-deformation process. Prices follow a semi-martingale,
which precludes arbitrage in a standard two-asset economy. Volatil-
ity has long memory, and the highest finite moments of returns can
take any value greater than two. The local variability of the pro-
cess is highly heterogeneous, and is usefully characterized by the local
Holder exponent at every instant. In contrast with earlier processes,
this exponent takes a continuum of values in any time interval. The
model also predicts that the moments of returns vary as a power law
of the time horizon. We confirm this property for Deutsche Mark/U.S.
Dollar exchange rates and several equity series. We then develop an
estimator, and infer a parsimonious generating mechanism for the ex-
change rate series. The moment-scaling rule in the data is replicated
by simulated samples from the estimated model.

JEL Classification: GO, Cb.
Keywords: Multifractal Model of Asset Returns, Compound Stochas-

tic Process, Time Deformation, Scaling, Self-Similarity, Multifractal
Spectrum, Stochastic Volatility.



1. Introduction

The Multifractal Model of Asset Returns (MMAR) is a continuous-time process
that captures the thick tails and long-memory volatility persistence exhibited
by many financial time series.! It is constructed by compounding a standard
Brownian motion with a random time-deformation process, which is specified to
be multifractal. The time deformation produces clustering and long memory in
volatility, and implies that the moments of returns vary as a power law of the
time horizon. We empirically confirm this property for the Deutsche Mark/U.S.
Dollar exchange rate, a U.S. equity index, and several individual stocks.

The MMAR is characterized by a form of time-invariance called multiscaling,
which combines extreme returns with long-memory in volatility. This specifica-
tion improves on traditional models with scaling features in several ways. First,
the MMAR is consistent with economic equilibrium. The simplest version im-
plies uncorrelated returns and semi-martingale prices, thus precluding arbitrage
in a standard two-asset economy. The model also permits significant flexibility in
matching the data. Returns have a finite variance, and their highest finite mo-
ment can take any value greater than two. Consistent with many financial series,
the unconditional distribution of returns displays thinner tails as the time scale
increases. In contrast with earlier processes, however, the distribution need not
converge to a Gaussian at low frequencies and never converges to a Gaussian at
high frequencies. The MMAR thus captures the distributional nonlinearities ex-
hibited by financial data, while retaining the parsimony and tractability of scaling
models.

The time-deformation process is obtained as the limit of a simple iterative pro-
cedure called a multiplicative cascade. The construction begins with a uniform
distribution of volatility at a suitably long time horizon, and randomly concen-
trates volatility into progressively smaller time intervals. The procedure follows
the same rule at each stage of the cascade, which provides parsimony and implies
moment-scaling. By construction, volatility clustering exists at all frequencies,
which corresponds to the intuition that economic factors such as technological
shocks, business cycles, earnings cycles, and liquidity shocks have different time

!Long memory is conveniently defined by hyperbolically declining autocorrelations either for
a process itself or functions of it. This property was first analyzed in the context of fractional
integration of Brownian motion by Mandelbrot (1965, 1971, 2000), Mandelbrot and van Ness
(1968) and Mandelbrot and Wallis (1969). It has been documented in squared and absolute
returns for many financial data sets (Taylor, 1986; Ding, Granger, and Engle, 1993; Dacorogna
et al., 1993). Baillie (1996) provides a survey of long-memory in economics.



scales.? We anticipate that rational equilibrium models can generate the MMAR,
either exogenously through multifractal shocks, or endogenously due to market
incompleteness or informational cascades.

The MMAR provides a fundamentally new class of stochastic processes to
financial economists. In particular, the multifractal model is a continuous diffusion
that lies outside the class of It6 processes. While these traditional models locally
vary as (dt)'/? along their sample paths, the MMAR generates the richer class
(dt)*” where the local scale a(t) can take a continuum of values. The relative
occurrences of the local scales «/(t) are conveniently summarized in a renormalized
probability density called the multifractal spectrum. Given a specification of the
model, we provide a general rule for calculating this function, and derive its closed-
form expressions in a number of examples. The applied researcher can estimate
the spectrum from the moments of the data, and then infer the specification of
the multifractal generating process.

Our empirical work begins by examining the Deutsche Mark/U.S. Dollar (“DM/
USD”) exchange rate. We use a high frequency data set of approximately 1.5 mil-
lion quotes collected over one year, and a twenty-three year sample of daily prices.
The exchange rate displays the moment-scaling property predicted by the model
over a remarkable range of time horizons. We estimate the multifractal spectrum
and infer a generating mechanism that replicates DM /USD scaling. Monte-Carlo
simulations then show that GARCH and FIGARCH samples are less likely than
the MMAR to reproduce these results. We find additional evidence of scaling in
a U.S. equity index and five individual stocks.?

Volatility modelling has received considerable attention in finance, and the
most common approaches currently include numerous variants of the ARCH/
GARCH class (Engle, 1982; Bollerslev, 1986) and stochastic volatility models
(Wiggins, 1987).% Because early processes in this literature had difficulty cap-
turing the outliers of financial series, researchers have proposed conditional dis-

2This idea is further elaborated in Calvet and Fisher (1999a).

3The moment-scaling properties of financial returns are also the object of a growing physics
literature (Galluccio et al., 1997; Vandewalle and Ausloos, 1998; Pasquini and Serva, 1999, 2000;
Richards, 2000). These contributions confirm that multiscaling is exhibited by many financial
time series, and are thus complementary of the empirical work contained in FCM (1997) and
further developed in this paper. While the physics literature focuses on these phenomenological
regularities, the MMAR is a parsimonious stochastic process that allows a unified treatment of
the theoretical and empirical properties of the price dynamics.

“See Ghysels, Harvey and Renault (1996) for a recent survey of the stochastic volatility
literature.



tributions of returns with thicker tails than a Gaussian. In discrete time, these
adaptations include the Student-¢ (Bollerslev, 1987) and non-parametric specifi-
cations (Engle and Gonzalez-Rivera, 1991). The problem of modeling thick tails
is more acute in continuous time, and is typically addressed by incorporating an
independent jump process. Bates (1995, 1996) thus finds that standard diffusions
cannot produce tails sufficient to explain the implied volatility smile in option
prices, and recommends the incorporation of jumps. Although a continuous dif-
fusion, the MMAR incorporates enough bursts of extreme volatility to capture
the fat tails of financial series. It also extends the characterization of volatility
in continuous time by considering a multiplicity of local scales. In particular, the
multifractal model can generate local oscillations that are intermediate between
Ito diffusion and discontinuous jumps.

While early processes from the ARCH/GARCH literature have weak persis-
tence, long-memory in squared returns is a characteristic feature of FIGARCH
(Baillie, Bollerslev and Mikkelsen, 1996) and the Long Memory Stochastic Volatil-
ity (LMSV) approach (Breidt, Crato, and DeLima, 1997). The MMAR is reminis-
cent of the long-memory property of these models. In addition, the multifractal
process is convenient to analyze under temporal aggregation, and parsimoniously
consistent with the moment-scaling properties of financial data.

The multifractal model fundamentally differs from previous volatility models
in its scaling properties. The emphasis on scaling originates in the work of Man-
delbrot (1963) for extreme variations, and Mandelbrot (1965) and Mandelbrot and
van Ness (1968) for long-memory. Multifractality is a form of generalized scaling
that includes both extreme variations and long-memory, which was first developed
in the context of turbulent dissipation (Mandelbrot, 1972, 1974). These develop-
ments are summarized in Mandelbrot (1997), where the use of multifractality in
finance is also forcefully advocated.

Section 1.1 discusses the relation between the MMAR and earlier scaling mod-
els. Section 2 defines multifractals, and demonstrates their construction through
a number of simple examples. Section 3 formalizes the MMAR by compound-
ing a Brownian motion with a continuous time-deformation process. Section 4
shows that multifractal processes can take a continuum of local scales, whose dis-
tribution is conveniently characterized by the multifractal spectrum. Section 5
extends the model to permit long-memory in returns. This allows testing of the
martingale hypothesis and may be useful in modelling economic series with per-
sistence. In Section 6, we verify the moment-scaling rule for DM /USD exchange
rates, and estimate the corresponding multifractal spectrum. We infer a data-



generating process and show that simulated samples replicate the scaling features
of the data. Evidence of multifractal scaling is also found in a U.S. equity index
and five individual stocks. Section 7 summarizes our results and discusses possible
extensions.

This paper simplifies the discussion and extends the results of three earlier
working papers ([70], [26], [41]). In the remainder of the text, we refer to the
working papers as MFC, CFM, and FCM, signifying the various permutations of
the authors. All proofs are contained in the Appendix.

1.1. Review of the Literature

The multifractal model combines several elements of previous research on financial
time series. First, the MMAR generates fat tails in the unconditional distribution
of returns, and is thus reminiscent of the L-stable processes of Mandelbrot (1963).°
The MMAR improves on this earlier model by generating returns with a finite
variance, as seems to be empirically the case in most financial series. Furthermore,
the L-stable model assumes that increments are independent through time, and
have thus the same variability at every instant. In contrast, the MMAR helps
model one of the main features of financial markets - fluctuations in volatility.

Second, the multifractal model has long memory in the absolute value of re-
turns, but the returns themselves have a white spectrum. Long memory is the
characteristic feature of fractional Brownian motion (FBM), introduced by Man-
delbrot (1965) and Mandelbrot and van Ness (1968). A FBM, denoted By (t), has
continuous sample paths, as well as Gaussian and possibly dependent increments.
The FBM is an ordinary Brownian motion for H = 1/2, is antipersistent when
0 < H < 1/2, and displays persistence and long memory when 1/2 < H < 1.
Granger and Joyeux (1980) and Hosking (1981) introduced ARFIMA, a discrete-
time counterpart of the FBM that helped the use of long memory in economics.
FBM and ARFIMA do not disentangle volatility persistence from long-memory
in returns.® This has obvious limitations in financial applications and has led to
the construction of processes such as FIGARCH and LMSV. Like these recent
models, the MMAR separates persistence in volatility from persistence in returns,
but in a parsimonious, continuous-time setting.

5Recent applications of the L-stable model to foreign exchange rates include Koedijk and
Kool (1992) and Phillips, McFarland and McMahon (1996).

6Taqqu (1975) establishes that By (t) has long memory in the absolute value of increments
when H > 1/2.



The third essential component of the multifractal model is the concept of
trading time, introduced by Mandelbrot and Taylor (1967).

Definition 1. Let {B(t)} be a stochastic process, and 6(t) an increasing function
of t. We call

a compound’ process. The index t denotes clock time, and 6(t) is called the
trading time or time-deformation process.

When the directing process B is a martingale, the trading time speeds up or slows
down the process X (t) without influencing its direction. Compounding can thus
separate the direction and the size of price movements, and has been used in the
literature to model the unobserved natural time-scale of economic series (Mandel-
brot and Taylor, 1967; Clark, 1973; Stock, 1987, 1988). More recently, this method
has been used to build models integrating seasonal factors (Dacorogna et al., 1993;
Miiller et al., 1995), and measures of market activity (Ghysels, Gouriéroux, and
Jasiak, 1996). The MMAR also incorporates compounding, and its primary in-
novation is to specify the trading time 6 to be multifractal. While the MMAR is
not a structural model of trade, future work may define the trading time 6 to be
a function of observable data.

Finally, the MMAR generalizes the concept of scaling, in the sense that a well-
defined rule relates returns over different sampling intervals. Mandelbrot (1963)
suggested that the shape of the distribution of returns should be the same when
the time scale is changed, or more formally:

Definition 2. A random process {X (t)} that satisfies
{X(cty), .y X (cti)} £ {e" X (1), o T X (1)}

for some H > 0 and all ¢, k,t1,...,t; > 0, is called self-affine.® The number H is
the self-affinity index, or scaling exponent, of the process {X(t)}.

"Processes of this type have also been called subordinated in the recent economics literature.
In mathematics, subordination differs from compounding, and requires that 6(¢) have indepen-
dent increments (Bochner, 1955; Feller, 1968). The economics literature has evolved to describe
any generic time deformation process as a subordinator.

8Gelf-affine processes are sometimes called self-similar in the literature.



The Brownian motion, the L-stable process and the FBM are the main examples
of self-affine processes in finance. Empirical evidence suggests that many financial
series are not exactly self-affine, but instead have thinner tails and become less
peaked in the bells when the sampling interval increases. The MMAR captures
this feature, as well as a generalized version of self-affinity exhibited by the data.
While maintaining the simplicity of self-affine processes, the MMAR is thus suf-
ficiently flexible to model the nonlinearities, fat tails, and long-memory volatility
persistence exhibited by many financial time series.

2. Multifractal Measures and Processes

The MMAR is constructed in Section 3 by compounding a Brownian motion B(?)
with a random increasing function 6(t):

In P(t) — In P(0) = B[0(1)].

The trading time @(t) will be specified as the cumulative distribution function
(c.d.f.) of a multifractal measure u, a concept which we now present.

2.1. The Binomial Measure

Multifractal measures can be built by iterating a simple procedure called a mul-
tiplicative cascade. We first present one of the simplest examples, the binomial
measure® on [0, 1]. Consider the uniform probability measure y on the unit inter-
val, and two positive numbers mg and m; adding up to 1. In the first step of the
cascade, we define a measure p; by uniformly spreading the mass mg on the left
subinterval [0,1/2], and the mass m; on the right subinterval [1/2,1]. The density
of p is a step function, as illustrated in Figure la.

In the second stage of the cascade, we split the interval [0, 1/2] into two subin-
tervals of equal length. The left subinterval [0,1/4] is allocated a fraction mg of
11[0,1/2], while the right subinterval [1/4,1/2] receives a fraction m;. Applying
a similar procedure to [1/2,1], we obtain a measure ps such that:

Nz[O, 1/4] = Mmpmy, ﬂ2[1/4a 1/2] = moymy,
p2(1/2,3/4] = mimo, po[3/4,1] = mymy.

9The binomial is sometimes called the Bernoulli or Besicovitch measure.




Iteration of this procedure generates an infinite sequence of measures (py) that
weakly converges to the binomial measure . Figure 1b illustrates the density of
the measure 4 obtained after k£ = 4 steps of the recursion.

Since mg + m; = 1, each stage of the construction preserves the mass of
split dyadic intervals.'® Consider the interval [t,t + 27%], where t = 0.9..7mx =
Zle n;2~" for some 7,....,m € {0,1}. We denote by ¢ and ¢; the relative
frequencies of 0s and 1s in (71, ...,7x). The measure of the dyadic interval then
simplifies to pft, t+2 %] = mf#m*®" . This illustrates that the construction creates
large and increasing heterogeneity in the allocation of mass. As a result, the
binomial, like many multifractals, is a continuous but singular probability measure
that has no density and no point mass.

This construction is easily generalized. For instance, we can uniformly split
intervals into an arbitrary number b > 2 of cells at each stage of the cascade.
Subintervals, indexed from left to right by 8 (0 < 8 < b — 1), then receive
fractions my, .., mp_1 of the measure. We preserve mass in the construction by
imposing that these fractions, also called multipliers, add up to one: ) mg = 1.
This defines the class of multinomial measures, which are discussed in Mandelbrot
(1989a).

A more significant extension randomizes the allocation of mass between subin-
tervals. The multiplier of each cell is then a discrete random variable Mg tak-
ing values mg, mq, ..., my—1; With probabilities py, .., p,—1. We preserve mass in the
construction by imposing the additivity constraint: ) Mz = 1. This modified
algorithm generates a random multifractal measure. Figure 1c shows the random
density obtained after £ = 10 iterations with parameters b = 2, p = py = 0.5
and my = 0.6. This density, which represents the flow of trading time, begins
to show the properties we desire in modeling financial volatility. The occasional
bursts of trading time generate thick tails in the compound price process, and
their clustering generates volatility persistence. Because the reshuffling of mass
follows the same rule at each stage of the cascade, volatility clustering is present
at all time scales.

2.2. Multiplicative Measures

We can also consider non-negative multipliers Mg (0 < 5 < b— 1) with arbitrary
distributions. Assume for simplicity that all multipliers are identically distributed

10A number ¢ € [0,1] is called dyadic if t =1 or t = ;21 + ... + 92 ¥ for a finite k and
N1y -Mk € {0,1}. A dyadic interval has dyadic endpoints.



(Mg <M V), and that multipliers defined at different stages of the construction
are independent. The limit multiplicative measure is called conservative when
mass is conserved exactly at each stage: > Mz = 1, and canonical when it is
preserved only on average: E( Y Mpg) = 1 or equivalently EM = 1/b. A canonical
measure can be conveniently generated by choosing independent multipliers Mg
within each stage of the cascade.

The moments of multiplicative measures have interesting scaling properties.
To show this, first consider the generating cascade of a conservative measure .
Stage 1 uniformly splits the unit interval into cells of length b=!, and allocates
random masses My, .., M_1 to each cell. Similarly, the measure of a b-adic cell
of length At = b7*, starting at t = 0.n;..p, = >_mb™", is the product of k
multipliers:

p(At) = My, M,

m,m2---

M,

-7k " (21)

Since multipliers defined at different stages of the cascade are independent, we
infer that E [u(At)?] = [E(M9)]* or equivalently

E[u(At)] = (At)T@0H, (2.2)

where 7(q) = —log, E(M?) — 1. The moment of an interval’s measure is thus
a power functions of the length At¢. This important scaling rule characterizes
multifractals.

Scaling relation (2.2) easily generalizes to a canonical measure u, which by defi-
nition is generated by a cascade that only conserves mass on average: E( > Mp) =
1. The mass of the unit interval is then a random variable Q = u[0,1] > 0. More
generally, the measure of a b-adic cell satisfies

/’L(At) = Mnan Mnlaananlyynk’ (23)

where €2, .. has the same distribution as 2. This directly implies the scaling
relationship

1,M2°"

E [u(At)7] = E(Q7) (At)" @O+, (2.4)

which generalizes (2.2).

The right tail of the measure pu(At) is determined by the way mass is pre-
served at each stage of the construction. When p is conservative, the mass
of the cell is bounded above by the deterministic mass of the unit interval:

10



0 < p(At) < p[0,1] = 1, and has therefore finite moments of every order. On the
other hand, consider a canonical measure generated by independent multipliers
Mpg. We assume for simplicity that E (M?) < oo for all ¢. Guivarc’h (1987) shows
that the random mass €2 > 0 of the unit interval then has a Paretian right tail:

P{Q > w} ~ Clw™ % as w — 400,

where C; > 0 and the critical moment ¢..;; is finite and larger than one: 1 <
Gerir < 00.11 By (2.3), the mass of every cell has the same critical moment g.;; as
the random variable 2. The property q..;+ > 1 will prove particularly important
because it implies that returns have a finite variance in the MMAR.

The multiplicative measures constructed so far are grid-bound, in the sense
that the scaling rule (2.4) holds only when ¢t = 0.77y,..,m and At = b7, 1 >
k. Let D denote the set of couples (¢, At) satisfying scaling rule (2.4). D has
interesting topological properties that are summarized in Condition 1 of Appendix
8.1. Alternatively, we can consider grid-free random measures that satisfy scaling
rule (2.4) for all admissible values of (¢, At) (Mandelbrot, 1989a). This leads to
the following

Definition 3. A random measure p defined on [0,1] is called multifractal if it
satisfies

E(ult,t + At]?) = c(q) (A1) @O+ for all (t,At) € D, q € Q,

where D is a subset of [0,1] x [0,1], Q@ is an interval, and 7(q) and c(q) are
functions with domain Q. Moreover, [0,1] C Q, and D satisfies Condition 1,
which is defined in the Appendiz.

Maintaining the distinction between grid-bound and grid-free measures would
prove cumbersome and lead to unnecessary technicalities. We will therefore ne-
glect the difference between the two classes in the remainder of this paper. The
interested reader can refer to Calvet and Fisher (1999a) for a detailed treatment
of grid-free multifractals.

2.3. Multifractal Processes

Multifractality is easily extended from measures to stochastic processes:

" The cascade construction also implies that 2 satisfies the invariance relation E?=1 M;Q; 4
Q, where My, .., My, Qq, .., are independent copies of the random variables M and (2.

11



Definition 4. A stochastic process {X (t)} is called multifractal if it has station-
ary increments and satisfies

E(|X(t)|9) = c(q)t™ @+, forallt € T, g € Q, (2.5)

where T and Q are intervals on the real line, 7(q) and c(q) are functions with
domain Q. Moreover, T and Q have positive lengths, and 0 € T, [0,1] C Q.

The function 7(q) is called the scaling function of the multifractal process. Setting
g = 0 in condition (2.5), we see that all scaling functions have the same intercept
7(0) = —1. In addition, it is easy to show

Proposition 1. The scaling function 7(q) is concave.

We will see that the distinction between linear and nonlinear scaling functions
7(q) is particularly important.

A self-affine process { X (¢)} is multifractal and has a linear function 7(g), as is
now shown. Denoting by H the self-affinity index, we observe that the invariance
condition X (t) £ t#X (1) implies E (| X ()|9) = t#9E (|X (1)|7) . Scaling rule (2.5)
therefore holds with ¢(¢) = E(|X (1)|?) and

7(q) = Hq — 1.

In this special case, the scaling function 7(q) is linear and fully determined by its
index H. More generally, linear scaling functions 7(q) are determined by a unique
parameter, their slope, and the corresponding processes are called uniscaling or
unifractal.

Uniscaling processes, which may seem appealing for their simplicity, do not
satisfactorily model asset returns. This is because most financial data sets have
thinner tails and become less peaked in the bell when the sampling intervals At
increases. In this paper, we focus on multiscaling processes, which have a nonlinear
7(q). They provide a parsimonious framework with strict moment conditions, and
enough flexibility to model a wide range of financial prices.

3. The Multifractal Model of Asset Returns

We now formalize construction of the MMAR. Consider the price of a financial
asset P(t) on a bounded interval [0, 7], and define the log-price process

X (t) =InP(t) — In P(0).

12



We model X (¢) by compounding a Brownian motion with a multifractal trading
time:

Assumption 1. X(t) is a compound process

where B(t) is a Brownian motion, and 0(t) is a stochastic trading time.

Assumption 2. Trading time 0(t) is the c.d.f. of a multifractal measure u de-
fined on [0,T].

Assumption 3. The processes {B(t)} and {6(t)} are independent.

This construction generates a large class of multifractal processes.

We will show that the price process is a semi-martingale, which implies the
absence of arbitrage in simple economies. A straightforward generalization of this
model allows the broader class of fractional Brownians By (t) in Assumption 1,
as developed in Section 5. In Assumption 2, the multifractal measure y can be
multinomial or multiplicative, which implies a continuous trading time 6(¢) with
non-decreasing paths and stationary increments. Assumption 3 ensures that the
unconditional distribution of returns is symmetric. Weakening this assumption
allows leverage effects, as in EGARCH (Nelson, 1991) and Glosten, Jagannathan
and Runkle (1993), and is a promising direction for future research.

Under the above assumptions,

Theorem 1. The log-price X (t) is a multifractal process with stationary incre-
ments and scaling function Tx(q) = 19(q/2).

Trading time controls the tails of the process X (). As shown in the proof, the
g-th moment of X exists if (and only if) the process @ has a moment of order
q/2. In particular if E | X (¢)|? is finite for some instant ¢, then it is finite for all
t. We therefore drop the time index when discussing the critical moment of the
multifractal process.

The tails of X (¢) have different properties if the generating measure is con-
servative or canonical. This follows directly from the discussion of Section 2.2. If
i is conservative, trading time is bounded, and the process X (¢) has finite mo-
ments of all (non-negative) order. Conservative measures thus generate “mild”
processes with relatively thin tails. Conversely, the total mass 0(T) = p0,T]

13



of a canonical measure is a random variable with Paretian tails. In particular,
there exists a critical exponent q..;1(0) > 1 for trading time such that E# is finite
when 0 < g < g.(0), and infinite when ¢ > qe.4(0).'> The log-price X (¢) then
has infinite moments, and is accordingly called “wild”. Note however that X (¢)
always has finite variance, since ¢it(X) = 2¢e(6) > 2. Overall, the MMAR has
enough flexibility to accommodate a wide variety of tail behaviors.

We can also analyze how the unconditional distribution of returns varies with
the time horizon ¢. Consider for instance a conservative measure g such as a
random binomial. At the final instant 7', the trading time 6(T") is deterministic,
implying that the random variable X (7") is normally distributed. As we move to a
smaller horizon ¢, the allocation of mass becomes increasingly heterogeneous, as is
apparent in Figure 1. The tails of returns thus become thicker at higher frequen-
cies. The mass of a dyadic cell can be written as p[t, ¢ + 27%] = mFrom*(=#0),
where ¢ = 0.7;...n; and ¢y denotes the proportion of the multipliers M,,, ...,
My, ...n. €qual to mg. By the law of large numbers, draws of ¢, concentrate in-
creasingly in the neighborhood of 1/2 as k increases, implying that the bell of the
distribution becomes thicker. The distribution of X (¢) thus accumulates more
mass in the tails and in the bell as the time horizon decreases, while the mid-
dle of the distribution becomes thinner. This property, which is consistent with
empirical observations, is further elaborated in Calvet and Fisher (1999b). In
addition, when the measure p is canonical, the random variables §(7") and X (T')
have Paretian tails, thus illustrating that multifractal returns need not converge
to a Gaussian at low frequency.

The model also has an appealing autocorrelation structure.

Theorem 2. The price {P(t)} is a semi-martingale (with respect to its natural
filtration), and the process {X(t)} is a martingale with finite variance and thus
uncorrelated increments.

The model thus implies that asset returns have a white spectrum, a property
which has been extensively discussed in the market efficiency literature.!'®

12We also know that the scaling function 74(q) is negative when 0 < ¢ < 1, and positive when
1< q< C]c7‘it(0)‘

13Gee Campbell, Lo and MacKinlay (1997) for a recent discussion of these concepts. We also
note that immediate extensions of the MMAR could add trends or other predictable components
to the compound process in order to fit different financial time series.

14



The price P(t) is a semi-martingale,'* which has important consequences for
arbitrage.’> Consider for instance the two asset economy consisting of the multi-
fractal security with price P(t), and a riskless bond with constant rate of return
r. Following Harrison and Kreps (1979), we can analyze if arbitrage profits can
be made by frequently rebalancing a portfolio of these two securities. Theorem 2
directly implies

Theorem 3. There are no arbitrage opportunities in the two asset economy.

This suggests that future research may seek to embed the MMAR in standard
financial models. Since the price P(t) is a semi-martingale, stochastic integra-
tion can be used to calculate the gains from trading multifractal assets, which
in future work will greatly help to develop portfolio selection and option pricing
applications. Further research will also seek to integrate multifractality into equi-
librium theory. We may thus obtain the MMAR in a general equilibrium model
with erogenous multifractal technological shocks, in the spirit of Cox, Ingersoll
and Ross (1985). Such a methodology is justified by the multifractality of many
natural phenomena, such as weather patterns, and will help build new economic
models of asset and commodity prices. Another line of research could also obtain
multifractality as an endogenous equilibrium property, which might stem from
the incompleteness of financial markets (Calvet, 1997) or informational cascades
(Gennotte and Leland, 1990; Bikhchandani, Hirshleifer and Welch, 1992; Jacklin,
Kleidon and Pfleiderer, 1992; Bulow and Klemperer, 1994; Avery and Zemsky,
1998).

Recent research focuses not only on predictability in returns, but also on persis-
tence in the size of price changes. The MMAR adds to this literature by proposing
a continuous time model with long memory in volatility. Because the price pro-
cess is only defined on a bounded time range, the definition of long memory seems
problematic. We note, however, that for any stochastic process Z with stationary
increments Z(a, At) = Z(a + At) — Z(t), the autocovariance in levels

0z(t,q) = Cov(|Z(a, AY)[*, | Z(a + t, At)[7),

quantifies the dependence in the size of the process’s increments. It is well-defined
when E|Z(a, At)|2q is finite. For a fixed ¢, we say that the process has long

14Gince the process X (t) = In P(t) is a martingale, Jensen’s inequality implies that the price
P(t) is a submartingale but not a martingale. This result is of course not specific to the MMAR.
15See Dothan (1990) for a discussion of semi-martingales in the context of finance.
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memory in the size of increments if the autocovariance in levels is hyperbolic
in ¢ when t/At — oo. When the process Z is multifractal, this concept does
not depend on the particular choice of ¢.'% It is easy to show that when u is a
multiplicative measure,

Theorem 4. Trading time 0(t) and log-price X (t) have long memory in the size
of increments.

This result can be illustrated graphically. Figure 2 shows simulated first dif-
ferences when 6(t) the c.d.f. of a randomized binomial measure with multiplier
mgy = 0.6. The simulated returns displays marked temporal heterogeneity at all
time scales and intermittent large fluctuations.

The MMAR is thus a flexible continuous time framework that accommodates
long memory in volatility, a variety of tail behaviors, and unpredictability in
returns. Furthermore, the multifractal model contains volatility persistence at all
time frequencies. Table 1 compares the MMAR with existing models of financial
time series.

4. The Multifractal Spectrum

This section examines the geometric properties of sample paths in the MMAR.
While we previously focused on global properties such as moments and autoco-
variances, we now adopt a more local viewpoint and examine the regularity of
realized paths around a given instant. The analysis builds on a concept borrowed
from real analysis, the local Holder exponent. On a given path, the infinitesimal
variation in price around a date ¢ is heuristically of the form'”

|In P(t + dt) — In P(t)| ~ Cy(dt)*®,

where a(t) and Cy are respectively called the local Holder exponent and the pref-
actor at t. As is apparent in this definition, the exponent «(t) quantifies the
scaling properties of the process at a given point in time, and is also called the
local scale of the process at t.

16Provided that E|Z(a, At)[*? < oo, as is implicitly assumed in the rest of the paper.
17The expression (dt)*®) is an example of “non-standard infinitesimal”, as developed by Abra-
ham Robinson.
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In continuous Ité diffusions, the Holder exponent takes the unique value a(t) =
1/2 at every instant.!® For this reason, traditional research obtains time variations
in market volatility through changes in the prefactor C;. In contrast, the MMAR
contains a continuum of local scales «(t) within any finite time interval. Thus,
multifractal processes are not continuous It6 diffusions and cannot be generated by
standard techniques. Fractal geometry imposes that in the MMAR, the instants
{t : a(t) < a} with local scale less than « cluster in clock time, thus accounting
for the concentration of outliers in our model. The relative frequency of the local
exponents can be represented by a renormalized density called the multifractal
spectrum. For a broad class of multifractals, we calculate this spectrum by an
application of Large Deviation Theory.

4.1. Local Scales

We first introduce

Definition 5. Let g be a function defined on the neighborhood of a given date t.
The number

a(t) = Sup {8 > 0: |g(t + At) — g(t)| = O(|At)®) as At — 0}
15 called the local Holder exponent or local scale of g at t.

The Holder exponent thus describes the local scaling of a path at a point in time,
and lower values correspond to more abrupt variations. The exponent «f(t) is
non-negative when the function g is bounded around ¢, as is always the case in
this paper. The definition readily extends to measures on the real line. At a given
date ¢, a measure simply has the local exponent of its c.d.f.

We can easily compute Holder exponents for many functions and processes.
For instance, the local scale of a function is 0 at points of discontinuity, and
1 at (non-singular) differentiable points. Smooth functions thus have integral
exponents almost everywhere. On the other hand, the unique scale «a(t) = 1/2
is observed on the jagged sample paths of a Brownian motion or of a continuous
It6 diffusion. Similarly, a fractional Brownian By (t) is characterized by a unique
exponent «(t) = H. Thus, the continuous processes typically used in finance

18More precisely, the set {t : a(t) # 1/2} of instants with a local scale different from 1/2 has a
Hausdorf-Besicovitch measure (and therefore a Lebesgue measure) equal to zero. This set can
thus be neglected in our analysis. See Kahane (1997) for a recent survey of this topic.
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each have a unique Holder exponent. In contrast, multifractal processes contain
a continuum of local scales.

The mathematics literature has developed a convenient representation for the
distribution of Holder exponents in a multifractal. This representation, called the
multifractal spectrum, is a function f(«) that we now describe. From Definition
5, the Holder exponent «(t) is the liminf of the ratio

In|g(t, At)|/In(At) as At — 0,

where, consistent with previous notation, g(t, At) = g(t + At) — g(¢). This sug-
gests estimating the distribution of the local scale «(t) at a random instant. For
increasing k£ > 1, we partition [0, T] into b* subintervals [t;,¢; + At], where length
At = b"*T, and calculate for each subinterval the coarse Holder exponent

ag(t;) = In|g(t;, At)|/In At.

This operation generates a set {ax(t;)} of b¥ observations. We then divide the
range of as into small intervals of length Ac, and denote by Ni(«) the number of
coarse exponents contained in (o, o + Aa]. It would then be natural to calculate
a histogram with the relative frequencies Nj(«)/b*, which converge as k — oo
to the probability that a random instant ¢ has Holder exponent «. Using this
method, however, the histogram would degenerate into a spike and thus fail to
distinguish the MMAR from traditional processes. This is because multifractals
typically have a dominant exponent g, in the sense that «(t) = « at almost
every instant. Mandelbrot (1974, 1989a) instead suggested

Definition 6. The limit

f(a)Elim{%} as k — oo (4.1)

represents a renormalized probability distribution of local Hélder exponents, and
is called the multifractal spectrum.

For instance if b = 3 and Ni(«) = 2%, the frequency Ni(a)/b* = (2/3)* converges
to zero as k — oo, while the ratio In Ny(a)/Inb* = In2/1n 3 is a positive constant.
The multifractal spectrum thus helps to identify events that happen many times
in the construction but at a vanishing frequency.

Frisch and Parisi (1985) and Halsey et al. (1986) interpreted f(«) as the
fractal dimension of T'(«) = {t € [0,7] : a(t) = a}, the set of instants having
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local Holder exponent «. For various levels of the scale «, Figure 1d illustrates
the subintervals with coarse exponent oy (t;) < . When the number of iterations
k is sufficiently large, these “cuts” display a self-similar structure. Appendix 8.6
provides a more detailed discussion of this interpretation.

4.2. The Spectrum of Multiplicative Measures

We now use Large Deviation Theory to compute the spectrum of multiplicative
measures. First consider a conservative measure p defined on the unit interval
[0,1]. After k iterations, we know the masses u[t, t + At] = M, My, 1. My, . 5 D
intervals of length At = b=*. The coarse exponents ay(t) = In plt,t + At]/In At

can thus thus be rewritten
a(t) = —(logy My, + ... +logy My, 0. )/ k. (4.2)

The multifractal spectrum is obtained by forming renormalized histograms of
these exponents. Letting V; = — log, M,, .., we can interpret the coarse Holder
exponents as draws of the random variable

1
o = Z V. (4.3)

The spectrum f(«a) then directly depends on the asymptotic distribution of .
By the Strong Law of Large Numbers, o, converges almost surely to'?

ag=EV; = —E log, M > 1. (4.4)

As k — o0, almost all coarse exponents are contained in a small neighborhood
of . The standard histogram N(c)/b* thus collapses to a spike at aq as an-
ticipated in Section 4.1. The other coarse exponents nonetheless matter greatly.
In fact, most of the mass concentrates on intervals with Holder exponents that
are bounded away from .2’ Information on these “rare events” is presumably
contained in the tail of the random variable .

19The relation —F log, M > 1 follows from Jensen’s inequality and E M = 1/b.
20Let Ty, denote the set of b-adic cells with local exponents greater than (1 + ag)/2. When k
is large, T}, contains “almost all” cells, but its mass:

Z(At)ak(t) < bk(At)(ao+1)/2 — b—k(ao—l)/2
teTy,

vanishes as k goes to infinity.
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Tail behavior is the object of Large Deviation Theory. In 1938, H. Cramér
established the following theorem under conditions that were gradually weakened.

Theorem 5. Let { X} denote a sequence of iid random variables. Then as k —
m’

k
1 1
S InP {E ;X > a} — Infln [Eet)],
for any o > EX;.

Proofs can be found in Billingsley (1979) and Durrett (1991). The theorem implies
Theorem 6. The multifractal spectrum f(«) is the Legendre transform

f(a) = Inflag —7(q)] (4.5)
of the scaling function 7(q).

This result holds for both conservative and canonical measures. It provides the
foundation of the empirical work developed in Section 6, where an estimation
procedure for the scaling function 7(g) is obtained and the Legendre transform
yields an estimate of the multifractal spectrum f(«).

The theorem allows us to derive explicit formulae for the spectrum in a number
of useful examples. To aid future reference, we denote by fy(a) the spectrum
common to a measure 4 and its c.d.f. #. Begin by considering a measure generated
by a log-normal multiplier M with distribution —logyM ~ N'(A, 0?). Conservation
of mass imposes that EM = 1/b or equivalently 02 = 2Inb/(A — 1). It is easy
to show that the scaling function 7(¢) = —log,(E M%) — 1 has the closed-form
expression 7(¢) = A\¢ — 1 — ¢?0*(Inb)/2. We infer from Theorem 6 that the
multifractal spectrum is a quadratic function

fo(@) =1~ (a—=X)*/[4(A - 1)]

parameterized by a unique number A > 1. More generally, Table 2 reports the
spectrum when the random variable V' is binomial, Poisson or Gamma (see CFM
for detailed derivations). We note that the function fy(«) is very sensitive to
the distribution of the multiplier, which suggests that the MMAR has enough
flexibility to model a wide range of financial prices. In the empirical work, this
allows us to identify a multiplicative measure from its estimated spectrum.
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4.3. Application to the MMAR

We now examine the spectrum of price processes generated by the MMAR. De-
noting by fz(«) the spectrum of a process Z(t), we show

Theorem 7. The price P(t) and the log-price X(t) have identical multifractal
spectra: fp(a) = fx(a) = fo(2a).

The log-price X (t) contains a continuum of local exponents, and thus cannot
be generated by an It6 diffusion process. Let «o(Z) denote the most proba-
ble exponent of a process Z. Since ay(f) > 1, the log-price has a local scale
ap(X) = ap(#)/2 larger than 1/2 at almost every instant. Despite their appar-
ent irregularity, the MMAR’s sample paths are almost everywhere smoother than
the paths of a Brownian motion. Section 4.2 indicates that the variability of the
MMAR is in fact explained by the “rare” local scales @ < ap(X). While jump
diffusions permit negligible sets to contribute to the total variation, multifractal
processes are notable for combining continuous paths with variations dominated
by rare events.

Although the local scale is larger than 1/2 almost everywhere, Theorem 1
implies that the standard deviation of the process

VE {IX(t+At) - X(0)7} = ex(2)"/*VAT

is of the order (At)'/2. Thus while most shocks are of order (At)*(X)  the expo-
nents a < ag(X) appear frequently enough to alter the scaling properties of the
variance. This contrasts with the textbook analysis that a standard deviation in
(At)!/2 implies that most shocks are of the same order.?! We expect these findings
to have interesting consequences for decision and equilibrium theory.

Z'Merton (1990, ch. 3) provides an interesting discussion of multiple local scales and “rare
events” in financial processes. Assume that the price variation over a time interval At is a
discrete random variable taking values €1, ..., &, with probability pi, .., pm, and assume moreover
that p; ~ (At)%, g; ~ (At)" and r; > 0 for all i. Denote by I the events i such that p;e? ~ At.
When the variance of the process > '~ p;e? is of the order At, only events in I contribute to
the variance. If all events belong to I, Merton establishes that only events of the order (At)'/?
matter. The MMAR shows that events outside I can play a crucial role in the statistical
properties of the price process, a property previously overlooked in the literature.
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5. An Extension with Autocorrelated Returns

The multifractal model presented in Section 3 is characterized by long memory
in volatility but the absence of correlation in returns. While there is little ev-
idence of fractional integration in stock returns (Lo, 1991), long memory has
been identified in the first differences of many economic series,?? including ag-
gregate output (Adelman, 1965; Diebold and Rudebusch, 1989; Sowell, 1992),
the Beveridge (1925) Wheat Price Index, the US Consumer Price Index (Baillie,
Chung and Tieslau, 1996), and interest rates (Mandelbrot, 1971; Backus and Zin,
1993).2% This has led authors to model these series with the FBM or the discrete-
time ARFIMA specification. We note, however, that these economic series have
volatility patterns which seem closer to the multifractal model than to the frac-
tional Brownian motion. This suggests using the fractional Brownian motion of
multifractal time.

We model an economic series X (t) by replacing Assumption 1 in Section 3
with

Assumption la. X(t) is a compound process
X(t) = Bulf(t)]

where By (t) is a Fractional Brownian motion, and 6(t) is a stochastic trad-
g time.

In addition, we maintain the multifractality of trading time (Assumption 2) and
the independence of the processes By (t) and 6(t) (Assumption 3). Note that
this coincides with the earlier model if H = 1/2. For other values of the index
H, the increments of X (¢) display either antipersistent (H < 1/2) or positive
autocorrelations and long memory (H > 1/2). The more general model is fully
developed in MFC, CFM and FCM.

The self-similarity of By (t) implies

Theorem 8. The process X (t) is a multifractal process with stationary incre-
ments, scaling function 7x(q) = To(Hq), and multifractal spectrum fx(a) =

fo(a/H).

22Maheswaran and Sims (1992) suggest potential applications in finance for processes lying
outside the class of semi-martingales.
23Gee Baillie (1996) for a review of this literature.
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The proof of these results is provided in MFC. We observe that 7x(1/H) = 1(1) =
0, which allows the estimation of the index H in the empirical work. The general-
ized construction has scaling properties analogous to the model explored earlier,
and provides a useful additional tool for empirical applications.

6. Empirical Evidence

6.1. Multifractal Moment Restrictions

Consider a price series P(t) on the time interval [0, 7], and the log-price X (t) =
In P(t) — In P(0). Partitioning [0,7] into integer N intervals of length At, we
define the sample sum or partition function

S, (T, At) = Ni X (it + At) — X (@A) (6.1)

1=0

When X (t) is multifractal, the addends are identically distributed, and the scaling
law (2.5) yields E[S, (T, At)] = Nex(q)(At)* @+ when the ¢™* moment exists.
This implies

InE[S, (T, At)] = 7x(¢) In(At) + cx(¢) (6.2)

where ¢%(¢) = Incx(¢) + InT. For each admissible ¢, equation (6.2) provides
testable moment conditions describing how the partition function varies with in-
crement size At. Various methods can be used to estimate 7x (¢) from the sample
moments of the data. By (4.5), its Legendre transform f(a) provides an estimate
of the multifractal spectrum, and can then be mapped back into a distribution
for the multipliers.

The scaling function 7x (q) is specified either parametrically or nonparametri-
cally. We can for instance choose a parametric family for the distribution of the
multiplier M. The multifractal spectrum f(«) then belongs to a specific class
of functions (Table 2), a constraint that can be imposed in estimation. On the
other hand, a non-parametric approach places fewer restrictions on the under-
lying process. Since 7y(q) = —log, E(M?) — 1, the sample moments provide all
the finite moments of M, and thus a great deal of information on its underlying
distribution.?*

24The distribution of M may not be uniquely determined by its moments. See Feller (1971)
and Durrett (1991) for good discussions of the uniqueness problem in moments.
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This paper uses a very simple estimation procedure. Given a set of positive
moments ¢ and time scales At, we calculate the partition functions S, (T, At) of
the data. The partition functions are then plotted against At in logarithmic scales.
By (6.2), the multifractal model implies that these plots should be approximately
linear when the ¢"* moment exists. Regression estimates of the slopes then provide
the corresponding scaling exponents 7x(g). This procedure will reveal striking
visual evidence of moment-scaling in DM /USD data. Simulation experiments are
then conducted to assess the joint performance of the multifractal model and the
estimation methodology.

6.2. Deutsche Mark/US Dollar Exchange Rates

We begin by investigating the multifractality of the Deutsche Mark/US Dollar
(“DM/USD”) exchange rate. We use two data sets provided by Olsen and Asso-
ciates, a currency research and trading firm based in Ziirich. The first data set
(“daily”) consists of a twenty-four year series of daily data spanning June 1973
to December 1996. Olsen collects price quotes from banks and other institutions
through several electronic networks. A price quote is converted to a single price
observation by taking the geometric mean of the concurrent bid and ask. The
reported price in the daily data is then calculated by linear interpolation of the
price observations closest to 16:00 UK on each side.?® Figure 3 shows the daily
data, which exhibits volatility clustering at all time scales and intermittent large
fluctuations.

The second data set (“high-frequency”) contains all bid/ask quotes and trans-
mittal times collected over the one year period from October 31, 1992 to Septem-
ber 1, 1993. We convert quotes to price observations using the same methodology
as Olsen, and obtain a round-the-clock data set of 1,472,241 observations. Olsen
provides a flag for quotes believed to be erroneous or not representative of actual
willingness to trade. We eliminate these observations, which constitute 0.36% of
the dataset. Combining the daily data and the high-frequency data allows us to
calculate partition functions over three orders of magnitude for At.

The high-frequency data show strong patterns of daily seasonality. In continu-
ous time, seasonality is a smooth transformation that does not affect local Holder
exponents. Since our data is discrete, however, we may expect seasonality to in-
troduce noise. To reduce this effect, we can write a seasonally modified version of

25 An earlier working paper (FCM) also uses noon buying rates provided by the Federal Re-
serve, and finds no significant difference in reported results.
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the MMAR:
In P(t) — In P(0) = By {0 [SEAS ()]},

where the seasonal transformation SEAS(t) is a differentiable function of clock
time. In this paper, we use a prefilter that smoothes variation in average absolute
returns over fifteen minute intervals of the week. Except for the reduction in noise,
there are no systematic differences in reported results for filtered and unfiltered
data. An earlier working paper (FCM) provides details on this and three other
seasonal prefilters, and finds small, predictable differences in results depending on
the deseasonalizing method.

6.3. Main Results

Figures 4 and 5 illustrate the partition functions of the two DM /USD data sets.
Values of At are chosen to increase multiplicatively by a factor of 1.1 from min-
imum to maximum. Since we focus on the slopes Tx(¢) but not the intercepts,
plots for each ¢ are renormalized by vertical displacement to begin at zero for the
lowest value of At in each graph. This allows plots for many ¢ to be presented
simultaneously. The daily and high frequency plots are presented in the same
graph to highlight the similarity in their slopes. This is achieved by a second ver-
tical displacement of the daily data that provides the best linear fit under OLS,
restricting both lines to have the same slope.

Figure 4 shows the full range of calculated At, from fifteen seconds to six
months, and five values of ¢ ranging from 1.75 to 2.25. This allows us to estimate
the self-affinity index H in the extended model presented in Section 5. Since
7x(1/H) = 0 and the standard Brownian specification H = 1/2 has previous
empirical support, we expect to find 7x(¢) = 0 for a value of ¢ near two.

We first note the approximate linearity of the partition functions beginning
at At = 1.4 hours and extending to the largest increment used, At = 6 months.
In this range, the slope is zero for a value of ¢ slightly smaller than two, and we
report

H ~0.53,

which implies very slight persistence in the DM /USD series. It is not immediately
clear whether this result is sufficiently close to H = 1/2 to be consistent with the
martingale version of the MMAR, but we will return to this issue in the following
section using simulation methods.
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The partition functions in Figure 4 also show breaks in linearity at high fre-
quencies. These are consistent with microstructure effects such as bid-ask spreads,
discreteness of quoting units, and discontinuous trading. In particular, these mi-
crostructure effects can be expected to induce a negative autocorrelation at high
frequencies, as is well-understood in the case of bid-ask bounce (Roll, 1984). Neg-
ative autocorrelation effectively acts as an additional source of volatility, as previ-
ously explored in the variance ratio literature (e.g., Campbell and Mankiw, 1987;
Lo and MacKinlay, 1988; Richardson and Stock, 1989; Faust, 1992). The results
in Figure 4 are analogous to variance ratio tests, exactly so if we focus on the
moment ¢ = 2. As we move to the left on the graph and sampling frequency in-
creases, microstructure induced negative autocorrelation increases, and the plots
bend upwards corresponding to the increase in variability.

Descriptive statistics help to confirm that high frequency breaks in linearity
are caused by microstructure effects. The departure from linearity begins at a
frequency of approximately At = 1.4 hours, which is highlighted by the dotted line
in Figure 4. We first note that the absolute change in the DM /USD rate averages
0.14 pfennig?® over a time increment of 1.4 hours. Comparing this to the average
spread of 0.07 pfennig,?” we observe that the spread covers a significant proportion
of average variation at this time horizon. It is thus sensible that microstructure
effects begin to effect scaling properties at this frequency. To further confirm
this intuition, observe that for time scales between 3.6 minutes and 1.4 hours,
the partition function has approximate slope of zero for the moment ¢ = 2.25.
This implies H ~ 0.44 < 1/2, consistent with the explanation that microstructure
induced negative autocorrelation causes the observed departure from scaling in
this high frequency region.?®

There are several potential solutions to these high-frequency microstructure
effects. First, we could view the MM AR as an underlying price process and overlay
it with a structural model of discrete trade and bid-ask spreads that could then
be related to the observed Olsen quotes. This would permit use of the data at
all frequencies, but at the cost of introducing a new set of modelling issues. A
second alternative is to use a reduced form model to prefilter the data to remove

26 One pfennig equals 0.01 DM.

*"The two most common spread sizes are 0.05 pfennig (38.25%), and 0.10 pfennig (52.55%),
together comprising over 90% of all observed spreads.

28To further confirm this explanation, one could compare across assets the frequency at which
departures from moment scaling begin. If the microstructure explanation is correct, one would
expect scaling to extend to higher frequencies when trading frictions (measured by variables
such as bid-ask spreads or the average time interval between trades) are lower.
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high frequency autocorrelations. This approach has recently been employed by
Andersen, Bollerslev, Diebold, and Ebens (2000), who use an MA(1) filter to
remove first order serial correlation from five-minute returns on the thirty stocks
tracked in the Dow Jones Industrial Index.?? While this would certainly remove
high-frequency autocorrelations, the effect of this procedure on scaling properties
would require further investigation. For simplicity, we choose to discard from
further analysis all values of At less than 1.4 hours,*® and have three orders of
magnitude of sampling frequencies with which to test the scaling properties of the
data.

With attention now restricted to values of At between 1.4 hours and 6 months,
Figure 5 presents partition functions for a larger range of moments 1.5 < ¢ < 5.
Higher moments capture information in the tails of the distribution of returns, and
are thus generally more sensitive to deviations from scaling. All of the plots are
nonetheless remarkably linear, and the overlapping values from the two data sets
appear to have almost the same slope. Thus despite the apparent non-stationarity
of the 24 year series, such as long price swings and long cycles of volatility, the
moment restrictions imposed by the MMAR seem to hold over a broad range of
sampling frequencies.

Estimates of the slopes in Figure 5 and additional moments ¢ are then used to
obtain estimated scaling functions 7x (¢) for both data sets. We note the increasing
variability of the partition function plots with the time scale At, which can be
attributed to the shrinking number of addends in the partition function at low
frequencies. This suggests a weighted least squares or generalized least squares
approach. In practice, however, weighting the observations has little effect on the
results because the plots are very nearly linear. Preferring simplicity, we thus
report in Figure 6 the estimated scaling functions from OLS regressions. The
estimated scaling functions are strictly concave, indicating multifractality, and
are fairly similar except for very large moments.

Theorem 6 suggests to estimate the multifractal spectrum fx («) by taking the

21n related work, Andersen, Bollerslev, Diebold, and Labys (2000) use five-minute DM /USD
data from Olsen, but do not correct for first order autocorrelations. Our results suggest that
their quadratic variation estimates could be biased upwards because of high-frequency autocor-
relation.

30As an approximation, the choice of At = 1.4 hours as the high-frequency cutoff for our
analysis is justified by Figure 4, but the exact value was chosen by ad hoc rounding. In the
future, there may be some gains to adopting a more formal test for the high-frequency cutoff
value. There is already a substantial econometric literature (see, e.g., Andrews, 1993) that could
be adapted to this purpose.
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Legendre transform of Tx(g). Following this logic, Figure 7 shows the estimated
multifractal spectrum of the daily data.?! The estimated spectrum is concave,
in contrast to the degenerate spectra of Brownian Motion and other unifractals.
Using the estimated spectrum, we can recover a generating mechanism for trading
time based on the canonical multiplicative cascades described in Section 2.2.

The spectrum of daily data is very nearly quadratic, and Section 4.2 has shown
that quadratic spectra are generated by lognormally distributed multipliers M.
We thus specify —log, M ~ N (), 0?), giving trading time 6(¢) with multifractal
spectrum fy(a) = 1 —(a—A)?/[4(A—1)]. The log-price process has most probable
exponent oy = AH, and spectrum

(o — ap)?
=1
Ix(a) 4H(ao — H)

Since H = 0.53, the free parameter o is used to fit the estimated spectrum. We
report

ag = 0.589,

which produces the parabola shown in Figure 7. Choosing a generating construc-
tion with base b = 2,32 this immediately implies A = 1.11 and 52 = 0.32.3% It is
also natural to consider the martingale version of the MMAR with the restriction
H = 1/2. For this case, we estimate the single parameter o = 0.545.

In both cases, the estimated value of the most probable local Hélder exponent
ap is greater than 1/2. On a set of Lebesgue measure 1, the estimated multi-
fractal process is therefore more regular than a Brownian Motion. However, the
concavity of the spectrum also implies the existence of lower Holder exponents
that correspond to more irregular instants of the price process. These contribute
disproportionately to volatility.

31 The estimated multifractal spectrum of the high frequency data is similar in many respects,
and is discussed in FCM.

32The base b of the multifractal generating process is not uniquely identified by the spectrum
alone, hence we assume the commonly used value b = 2. Calvet and Fisher (1999a) develop a
likelihood based filter under which b can be estimated for the class of multinomial multifractals.

33Mandelbrot (1989a, b) shows that the partition function methodology provides reasonable
estimates of 7x(g) only for moments ¢ < 1/4/ao(X)/H — 1, which is approximately equal to
5.66 in our estimated process.
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6.4. Monte Carlo Simulations

We now present simulation experiments that provide a preliminary assessment
of the new model and the estimation procedure. Figure 8 shows the levels and
log-differences of a random price path generated by the limit lognormal MMAR
estimated in Section 6.3.3* The simulation shows a variety of large price changes,
apparent trends, persistent bursts of volatility, and other characteristics found in
the DM /USD series.

The following sections examine whether the inferred process captures the mo-
ment properties of the data. We sketch the simulation methodology, and then
provide a synthetic discussion of the numerical results.

6.4.1. Methodology

We use three types of tests to analyze the MMAR’s performance. First, visual
evidence is provided on the moment properties of simulated data. Figure 9a thus
illustrates the partition functions corresponding to four simulations of the MMAR.
For comparison, we report in Figure 9b the partition functions of a GARCH(1,1)
process with the parameter estimates of Baillie and Bollerslev (1989). Figure 9¢
similarly considers the FIGARCH(1, d, 0) specification of Baillie, Bollerslev, and
Mikkelsen (1996). Each plot in Figure 9 is based on a long sample of 100, 000
observations. This sample length, which exceeds the sample size of 6,118 daily
DM/USD returns, has the advantage of reducing the noisiness of the partition
functions.

Second, we consider small samples and examine distributional evidence on
the linearity and slopes of the partition functions. The analysis focuses on four
processes: the extended MMAR (with arbitrary H), the martingale MMAR (H =
1/2), FIGARCH, and GARCH. These models are respectively indexed by m €
{1,..,4}. For each model m, we simulate J = 10,000 paths with the same length
T = 6,118 as the DM/USD data. We denote each path by Y = {Y/7},
(1 <j < J), and focus the analysis on the moments ¢ € Q = {0.5, 1, 2, 3, 5}. For
each path and each g, an OLS regression provides a slope estimate 7(g, Y;") and
the corresponding sum of squared errors SSE(g, Y/"). The distributions of these
statistics appear unimodal with smoothly declining tails. Tables 3 and 4 report
the percentiles of these statistics.

We summarize these findings with several measures of global fit. For a given

34The simulation of a multifractal path is discussed in Appendix 8.9.
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model m € {1,..,4}, each path Y™ generates a column vector of slope and SSE
estimates®>:

RYP™) = {[7(q, V"), In SSE(q, V"],

It is convenient to denote the data by X = {Xt}thl , and to arrange the simulated
paths in a J x T matrix Y™ = [V, .., Y7"]'. We also consider

XY™ = 1(X) = 3 307,

=1

The function H is useful to test how a particular model fits the moment properties
of the data. In particular, we can define a global statistic G = H'W H for any
positive-definite matrix W. The empirical work considers four different weighting
matrices W,,, m € {1, ..,4}, each of which is obtained by inverting the simulated

1
covariance matrix of moment conditions: W,,, = [ijl H (Y;m, Ym) H (Y]m, Ym)’ /J } }
The global statistics

Gun(X)=H (X, Y™ W,H(X,Y™),  m,ne€{l,.,4}.

are indexed by the model m that generates the simulated data Y™ and the model
n that generates the weighting matrix W, This gives a set of sixteen global
statistics. Assuming that m is the true model, we can estimate the cumulative
distribution function F,,, of each statistic from the set {Gm,n(ij)}lng 7, and
then quantify the p-value 1 — F,, ,, |Gy (X)]- The global statistics G, ,(X) and
their associated p-values are reported in Table 5.

6.4.2. Results

The simulation results in Figure 9 and Tables 3 — 5 confirm that the MMAR
replicates the main scaling features of the data. The partition function plots in
Figure 9a are approximately linear and tend to follow their theoretically predicted
slopes, which are nearly identical to the estimates from the DM /USD data. Tables
3 and 4 permit a more detailed assessment. The extended MMAR is very close
to the the data in both its theoretically predicted slopes 79 and the mean slopes

35We use the logarithm of the SSE in calculating the global statistics because Table 4 shows
that the SSE are heavily right-skewed.
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7. Furthermore, the estimated slopes from the DM/USD data are well within
the central bells of the simulated slope distributions generated by the extended
MMAR.

The martingale version is subtly different in both its theoretically predicted
and mean slopes. For low moments, the estimated slopes from the DM /USD data
are more towards the upper tails of the simulated distributions generated by the
martingale MMAR. In both cases, but more so for the martingale version, there
appears to be a slight downward bias in the average simulated slope relative to its
theoretical value. Future work may thus correct the bias in our estimation method
by matching simulated moments (Ingram and Lee, 1991; Duffie and Singleton,
1993).

Table 4 analyzes the variability of the simulated partition functions around
their slopes. The extended and martingale versions of the MMAR yield nearly
identical results. For low moments, the data falls well within the likely range
of the SSE statistic for both models. For high moments, the partition functions
are typically more variable for the simulated MMAR than for the data. This at
first seems curious, because the model has been designed specifically to produce
scaling. It is consistent, however, with the finding of a slight downward bias in
the slopes of the estimated partition functions. Correcting this bias would give a
slightly milder multifractal process, and thus reduce the variability of the partition
functions. This presents a promising avenue for improving estimation. Overall,
these results suggest that the MMAR is successful in matching the main scaling
features of the data.

Another important question is whether other standard econometric models
possess scaling properties. Figure 9b shows that GARCH(1, 1) partition functions
are fairly linear, but their apparent slope is similar to the predicted slope of
Brownian Motion rather than the data. This is symptomatic of the fact that
GARCH models are short memory processes. Over long time periods, temporal
clustering disappears and GARCH scales like a Brownian Motion. Tables 3 and
4 confirm this visual evidence. The SSE statistics show that GARCH tends to be
as linear as the data, but for two of the five moments, the slopes from the data
are in the extreme tails of their distributions simulated under GARCH. Because it
contains long-memory in volatility, FIGARCH can be expected to scale differently
than Brownian Motion at low frequencies. This is confirmed in Figure 9¢; however,
the same plots suggest that simulated FIGARCH partition functions are more
irregular than the scaling plots generated by GARCH, the MMAR, and the data.
Tables 3 and 4 again complement this visual evidence. The simulated FIGARCH
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slopes improve over the GARCH slopes, but are not as close to the data as the
MMAR. The SSEs from the data are also far in the tails of their distributions
generated under FIGARCH.

The previous analysis has separately assessed ten moment conditions that cap-
ture different scaling features of the data. We now consider the evidence provided
by the global statistics, which are quadratic functions of these ten moment condi-
tions. Each column of the results in Table 5 is obtained by a different weighting
of the set of quadratic terms, so that within column comparisons provide four
separate views of ability to fit scaling features of the data. Each of the weighting
matrices of course has differerent power against a given model, and asymptotic
theory suggests that the most powerful weighting matrix for each model is pro-
vided by the inverse of its own covariance matrix of moment conditions. Thus,
we expect the diagonal entries of the table to provide the greatest power to reject
each model, and this is consistent with our results. Whether evaluated column-
wise or by the diagonal elements, the results confirm that the MMAR is best able
to replicate the scaling properties of the data.

These simulations are of course only a preliminary step to evaluating the use-
fulness of the multifractal model. Nonetheless, our results demonstrate that scal-
ing properties contain important information for estimating and discriminating
between models. A natural path for future work will be to incorporate this infor-
mation in broader estimation and testing procedures. As these techniques develop
(e.g., Calvet and Fisher, 1999a) and lead to more rigorous evaluations, it will be

interesting to discover whether the promise of these early simulation results is
fulfilled.

6.5. Equity Data

After observing multifractal properties in DM /USD exchange rates, it is natural to
test the model on other financial data. This section presents evidence of moment-
scaling in a sample of five major U.S. stocks and one equity index.?¢

The Center for Research in Security Prices (CRSP) provides daily stock returns
for 9,190 trading days from July 1962 to December 1998. We present results
for the value weighted NYSE-AMEX-NASDAQ index (“CRSP Index”) and five

36 The multifractal model offers a flexible framework that may be amenable to many types of
financial prices. In particular, equity data requires additional consideration for the relationship
between volatility and mean returns. Since this has not been incorporated in the version of the
model presented in this paper, the results in this section should be interpreted as a model-free
investigation of scaling.
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stocks: Archer Daniels Midland (ADM), General Motors (GM), Lockheed-Martin,
Motorola, and United Airlines (UAL). The individual stocks are issued by large,
well-known corporations from various economic sectors, and have reported data
for the full CRSP sample span.3” For each series, we convert the daily return data
into a renormalized log-price series X;, and then apply the partition function
methodology described in Section 6.2.38

Figure 10 shows results for the CRSP index and GM. In the first two panels, the
full data sets are used with increments At ranging from one day to approximately
one year. The partition functions for moments ¢ = {1, 2,3} are approximately
linear for both series, with little variation around the apparent slope. The slope
for the moment ¢ = 2 is noticeably positive for the CRSP index, indicating persis-
tence. This characteristic is very atypical of individual securities, although short
horizon persistence has been observed previously in index returns, and is typically
attributed to asynchronous trading (e.g., Boudoukh, Richardson, and Whitelaw,
1993). In contrast to the results for low moments, the partition functions from
both series vary considerably for the moment ¢ = 5. This suggests investigation
of the tails of the data. We find that the behavior of the fifth moment is domi-
nated by volatility surrounding the stock market crash of October 1987. This is
demonstrated by the second two panels of Figure 10, which show striking linearity
after simply removing the crash day from both data sets.

Since discarding outliers seems an unsatisfactory approach to volatility mod-
elling,®® we reexamine the full data sets. The partition functions S,—5(T, At) for
both series drop considerably from At = 2 days to At = 3 days. In the raw data,
the CRSP index falls 17% on the day of the crash, but rebounds more than 8%
two days later. GM loses 21% in the crash, recovering almost all its losses over the
next two days. When At = 3 days, aggregation of these returns within a single
interval contributes to the severe declines in the ¢ = 5 partition functions.*® As

37Choosing stocks with full samples allows testing of the moment-scaling restrictions over a
larger range of frequencies.

38The CRSP holding period returns r; = (P; — P;_1 +d;)/P;—1 include cash distributions d;.
We construct the series {Xt}tho by Xo =0, X; = Xy—1 +1In(1 4+ ry).

39While discarding data may be justified in specific circumstances, our approach in this paper
has been to build a stationary model flexible enough to accomodate a wide range of changing
economic circumstances. This includes both long-range structural shifts, and extreme tail events
such as the 1987 crash.

“OWhen calculating the partition functions for At = 2 days, the crash day and the two
following days belong to separate intervals, each of which make large contributions to S5 (T, At =
2 days). When At = 3 days, however, the crash and the two following days belong to a
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At grows, the crash and the two following days occasionally fall in separate inter-
vals and the partition functions spike. More often, however, these three days lie
within a single interval when At is large. Moreover, when a spike does occur for
this reason with large At, its size is smaller because of the diminishing influence of
the crash at low frequencies. This discussion explains why the partition functions
Ss(T, At) show large variability, but primarily for low values of At. Because of
this variability, the estimated slopes of the partition function would appear to be
relatively imprecise.

After removing the crash from both data sets, the same partition functions ap-
pear to give a more precise fit, but at a cost. Both slopes increase to appear more
Brownian or “mild,” suggesting that important information has been lost. Addi-
tionally, removing the crash does not necessarily improve the fit of the MMAR
since the theoretically predicted slopes constrain only the expectations of the par-
tition functions, not their variability.*! In fact, the simulations in the previous
section indicate that multifractal paths often have partition functions that vary
considerable around their expected slope. Thus, removing the crash gives a false
impression of improved model fit and alters scaling properties to imply a much
milder process.

The other four stocks in our sample scale remarkably well despite the crash,
as shown in Figure 11. Consistent with the martingale hypothesis for returns,
three of the four stocks have almost exactly flat partition functions for ¢ = 2,
while ADM has a slight negative slope. The difference between Brownian scaling
and multiscaling becomes perceptible for ¢ = 3, and for the fifth moment, this
difference is pronounced. UAL appears the most variable, with lower slopes at
higher moments and thus a wider multifractal spectrum.

While not exhaustive, our empirical analysis indicates that moment-scaling is a
prominent feature of many financial series. Using DM /USD data, we confirm this
property across three orders of magnitude of frequencies and twenty-three years
of daily returns. A simple estimation procedure helps to provide a specification of
the multifractal model that reproduces scaling patterns found in the data. Finally,
our analysis of equity data shows that the partition function plots summarize a
great deal of information in a convenient form. This new tool may thus be useful
in uncovering empirical regularities and building new financial models.

single interval. Their returns partially cancel when aggregated, explaining the decreases in the
partition functions S5(T, At) at At = 3 days.

41The simulations in the previous section do, however, suggest that the variability of partition
function plots can usefully be incorporated into estimation.
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7. Conclusion

This paper has investigated the Multifractal Model of Asset Returns, a contin-
uous time stochastic process that incorporates the outliers and volatility persis-
tence exhibited by many financial time series. The model compounds a standard
Brownian Motion with an independent multifractal time-deformation process that
produces volatility clustering. We show how to construct a class of candidate time-
deformations as the limit of a simple iterative procedure, called a multiplicative
cascade. The cascade provides parsimonious modelling, and results in a general-
ized scaling rule that restricts return moments to vary as power laws of the time
increment. The price process is a semi-martingale with uncorrelated returns, and
thus precludes arbitrage in a standard two-asset setting.

The MMAR offers a fundamentally new class of processes to both finance and
mathematics. Multifractal processes have continuous sample paths, but lie outside
the class of It6 diffusions. Whereas standard processes can be characterized by a
single local scale that describes the local growth rate of variation, sample paths of
multifractal processes contain a continuum of local Holder exponents within any
time interval. The distribution of these exponents is conveniently quantified by
a renormalized density, the multifractal spectrum f(«a). For a large class of mul-
tifractal processes, the spectrum can be explicitly derived from Cramér’s Large
Deviation Theory. We demonstrate through a number of examples the sensitivity
of the multifractal spectrum to the generating mechanism. The applied researcher
may thus relate an empirical estimate of the spectrum back to a particular con-
struction of the process, and is permitted considerable flexibility in modelling
different types of data.

We find evidence of multifractality in the moment-scaling behavior of Deutsche
Mark/US Dollar exchange rates. Over a range of observational frequencies from
approximately two hours to 180 days, and over a range of time from 1973 to
1996, moments of the data grow approximately like a power law. We obtain an
estimate of the multifractal spectrum by a Legendre transform of the moments’
growth rates. From the shape of the estimated spectrum, we infer a lognormal
distribution as the primitive of the generating mechanism, and estimate its param-
eters. We simulate the process, and confirm that the multifractal model replicates
the moment behavior found in the data. We also demonstrate scaling behavior in
an equity index and five major U.S. stocks.

Our results indicate several directions for future research. Using our simulation
results as a guide, the moment-scaling features of the data can be incorporated
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into broader estimation and testing procedures. Risk analysis, forecasting, and
option pricing are promising applications that are currently being developed in
other papers. Further research will also seek to derive the MMAR as an equi-
librium process of economies with fully rational agents. In such frameworks,
multifractality is expected to arise in equilibrium either exogenously, for instance
as a consequence of multifractal technological shocks, or endogenously because
of market incompleteness or informational cascades. The early empirical success
of the MMAR thus offers new challenges in econometrics, finance, and economic
theory.
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8. Appendix

8.1. Scaling Rule

This Appendix analyzes the set D defined by a multiplicative measure with param-
eter b > 2. Consider a fixed instant ¢ € [0, 1]. For all € > 0, there exists a dyadic
number #, such that |t, —t| < . We can then find a number A, = b~ < ¢
for which (t,,4A,) € D. In the plane R?, the point (¢,0) is thus the limit of the
sequence (t,,A,) € D, which establishes

Property 1. The closure of D contains the set [0, 1] x {0}.

The scaling relation (2.4) thus holds “in the neighborhood of any instant”.

8.2. Proof of Proposition 1

Consider two exponents ¢, ¢o, and two positive weights w;, wy adding up to one.
Holder’s inequality implies

E(1X(0)]7) < E(X @) [E(X@)1)]",
where ¢ = w1q; + wago. Taking logarithms and using (2.5), we obtain
Ine(q) +7(g) Int < [w1T(q1) + war(g2)] Int + [wiIne(qr) + walne(gr)].  (8.1)
We divide by Int < 0, and let ¢ go to zero:
7(q) = wiT(q1) + wot(g2), (8.2)

which establishes the concavity of 7. This proof also contains additional informa-
tion on multifractal processes. Assuming that relation (2.5) holds for ¢ € [0, c0),
we divide inequality (8.1) by In¢ > 0 and let ¢ go to infinity. We obtain the reverse
of inequality (8.2), and conclude that 7(g) is linear. Thus exact multiscaling can
only hold for bounded time intervals 7.

8.3. Proof of Theorem 1

Since the trading time and the Brownian motion B(t) are independent, condition-
ing on 6(t) yields

E{[X@®)|"[0() =u} =E[[B(u)|" [6(t) = u]
= 0" E[|BL)|,
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and thus E [|X(¢)|9] = E [0()/?] E[|B(1)|7]). The process X (t) satisfies the mul-
tiscaling relation (2.5), with 7x(¢) = 79(¢/2) and cx(q) = ¢4(q/2) E[|B(1)]7].

8.4. Proof of Theorem 2

Let F; and F| denote the natural filtrations of {X (¢)} and {X (¢),0(¢)}. For any
t,T,u, the independence of B and € implies

E{X(@t+T)| F,0(+T)=u}=E{B(u)|F}
= B[(t)],

since {B(t)} is a martingale. We now infer that E[ X (¢t 4+ T) | F;] = X (¢), which
establishes that X (¢) is a martingale and has thus uncorrelated increments. The
price P(t) is a smooth function of X (¢) and therefore a semi-martingale, which
precludes arbitrage opportunities in the two asset economy.

8.5. Proof of Theorem 4

1. Trading Time

Consider a canonical cascade after £k > 1 stages. Consistent with the notation
of Section 2, the interval [0,7] is partitioned into cells of length At = b=*T,
and I = [t1,t; + At] and I, = [ta,ty + At] denote two distinct cells with lower
endpoints of the form ¢, /T = 0.ny...n and t5/T = 0.(;...(x. Assume that the first
[ > 1 terms are equal in the b-adic expansions of ¢; /T and t5/T, so that {; = n,
vy G =m, and (41 # My1. The distance t = [ty — #;] satisfies b=7! < ¢/T < b7,
and the product p(I7)?u(l5)9, which is equal to

Qf Q8 (MM

Ms--5Mk ms--M
(Mgly--7771+1"M7(711,--ﬂ7k) (Mgl,--,CH-l"Mgl,--,Ck)’
has mean (E?)2[EM2¢]'[EM?)2*~). We conclude that

Cov[p(11)%; u(I2)"] = (EQ*)*(EM)* {[(EM*?)/(EM?)?] — 1}
_ Cl(At)Qrg(q)+2 [b*l[Ta(Qq)*%e(lI)*U — 1}

is bounded by two hyperbolic functions of ¢.

38



2. Log-Price
Since B(t) and 6(t) are independent processes, the conditional expectation

E{|X(0,At)X (¢, At)|?| O(At) = uq, 0(t) = ug, O(t + At) = us}, (8.3)
simplifies to
E[|B(u1)|"] E[|B(us) — B(us)|] = |ur|""? Jug — up|”* [E|B(1)|"]".
Taking expectations, we infer that
E[|X(0,At) X (t, At)|Y] =E| |0(0, At)6(¢, At)\q/Q [IE|B(1)|q]2

and therefore 0 (t,q) = 65(t, ¢/2) [E|B(1)|]*.

8.6. Interpretation of f(«) as a Fractal Dimension

Fractal geometry considers irregular and winding structures that are not well
described by their Euclidean length. For instance, a geographer measuring the
length of a coastline will find very different results as she increases the precision of
her measurement. In fact, the structure of the coastline is usually so intricate that
the measured length diverges to infinity as the geographer’s measurement scale
goes to zero. For this reason, we cannot use the Euclidean length to compare two
different coastlines, and it is natural to introduce a new concept of dimension.
Given a precision level € > 0, we consider coverings of the coastline with balls
of diameter €. Let N(¢) denote the smallest number of balls required for such a
covering. The approximate length of the coastline is defined by L(e) = eN(g). In
many cases, N () satisfies a power law as & goes to zero:

N(g) ~e™ P,

where D is a constant called the fractal dimension. Fractal dimension helps to
analyze the structure of a fixed multifractal. For any « > 0, we can define the set
T'(c) of instants with Holder exponent «.. As any subset of the real line, 7'(«) has
a fractal dimension D(«), which satisfies 0 < D(«) < 1. It can be shown that for
a large class of multifractals, the dimension D(«) coincides with the multifractal
spectrum f().

In the case of measures, we can provide a heuristic interpretation of this result
based on coarse Holder exponents. Denoting by N(a, At) the number of intervals
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[t,t + At] required to cover T'(a), we infer from Equation (4.1) that: N(«, At) ~
(At) 7@ . We then rewrite the total mass u[0,7] = 3 u(At) ~ 3 (A)*Y | and
rearrange it as a sum over Holder exponents:

1[0, 7] ~ / (A>T gq,

The integral is dominated by the contribution of the Hélder exponent «; that
minimizes o — f(«), and therefore

ul0,T] ~ (At )

Since the total mass p[0,7] is positive, we infer that f(o1) = a1, and f(a) < «
for all . When f is differentiable, the coefficient o also satisfies f'(ay) = 1. The
spectrum f(a) then lies under the 45° line, with tangential contact at o = a;.

8.7. Large Deviation Theory and the Multifractal Spectrum

This Appendix sketches the proof of Theorem 6, and introduces the concepts of
latent and virtual Holder exponents.?? First consider a conservative multiplicative
measure p. Application of Large Deviation Theory (LDT) begins with the his-
togram method of Section 4.1. Subdivide the range of as into intervals of length
Aq, and denote by Ni(«) the number of coarse Holder exponents in the interval
(a, o + Aq]. For large values of k, we write

1 N, 1
% log, [%} ~ log,P{a < ap < a+ Aa}. (8.4)
This relation holds exactly for multinomial measures, which have discrete coarse

exponents oy, but is postulated in more general cases. For any o > g, Cramér’s
theorem implies

k'log, P{ay > a} — Inflog, [E e V1) n?] (8.5)
q

as k — oo. Using the definition of the scaling function, we simplify the limit to
Inf[ag — 7(¢q)]— 1. Combining this with (4.1) and (8.4), it follows*® that Theorem
q

6 holds.

42We refer the reader to Mandelbrot (1989b), Peyriere (1991) and CFM for more detailed
discussions.
43Gee CFM for a more detailed proof.
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These arguments easily extend to a canonical measure u. Given a b-adic
instant ¢, the coarse exponent ay(t) = In u[t,t + At]/In At is the sum of a high
frequency component, —k~* log, Q,, ..., and of the familiar low frequency average

ay,r(t) = — [logy My, + ... +logy My, n.]/k.

The exponent «y(t) converges almost surely to oy = —Elog, M, and the multi-
fractal spectrum is again the Legendre transform of the scaling function 7(q).
Relation (8.5) also shows that f(«) is the limit of

k™' ogy P{ay () > a} + 1 if o > o, and
k 'og, P{apr(t) < a} +1 if o < .

f(a) is therefore a hump-shaped function, reaching a maximum at the most prob-
able exponent: f(a) < f(ap) = 1.** We have successively viewed the spectrum

f(a) as:

(D1) the limit of a renormalized histogram of coarse Holder exponents,
(D2) the fractal dimension of the set of instants with Holder exponent «,
(D3) the limit of £ *log, P {ay 1(t) > a} + 1 provided by LDT.

The three definitions coincide for multinomial measures, and (D1) and (D2) agree
for a large class of multifractals (Peyriere, 1991). However, (D1) and (D2) imply
that f(«) > 0, while (D3) imposes no such restriction. When f(a) < 0, the
corresponding as, called latent, are rare coarse exponents, which appear in few
draws of the random measure and control high and low moments (Mandelbrot,
1989b). Similarly, since canonical measures allow M to be greater than 1, the
low-frequency average oy, r(t) can be negative with positive probability. (D3)
thus defines the multifractal spectrum for negative, or virtual, values of a.. This
topic, further discussed in Mandelbrot (1989b), remains an active research area
in mathematics.

441t is easy to show that agq — 7(q) is minimal for ¢ = 0. The set T'(ag) has therefore fractal
dimension f(ap) = —7(0) = 1, and thus carries all of the Lebesgue measure. Moreover by the
Central Limit Theorem, f(a) is locally quadratic around «p, as shown in CFM.
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8.8. Proof of Theorem 7

Given a process Z, denote az(t) as its local scale at date ¢, and Tz («) as the set
of instants with scale . At any date, the infinitesimal variation of the log-price
X(t+ At)— X(t) = B[(t + At)] — B[0(t)] satisfies

X (4 ) = X(8)] ~ |0+ At) = 0(8) 12 ~ | At 200,

implying ax (t) = ay(t)/2. The sets Tx () and Tp(2«) coincide, and in particular
have identical fractal dimensions: fx(«) = fs(2«). Moreover since the price P(t)
is a differentiable function of X (¢), the two processes have identical local Holder
exponents and spectra.

8.9. Simulation of Multifractal Paths

The construction of the simulated multifractal price paths used in Section 6.4.
has two basic components. First, a finite stage approximation to a canonical
multifractal measure is constructed as suggested in Section 2.2. All simulations
use the base b = 2, so that if a simulation of length 7" is desired, we choose the
minimum integer number of stages k such that 2 > T. At each stage in the con-
struction, we draw independent lognormal multipliers with identical distributions
given by the results in Section 6.3. When £ stages are completed, the measure
1y is used as a discrete approximation to the quadratic variation of a multifractal
path. Aggregating the increments of u; thus provides a simulated path from the
trading time 6 (¢). The second part of the construction involves compounding,
as suggested by Assumptions 1-3 of Section 3. For the martingale version of the
MMAR, we simply calculate the standard deviation [py, (At)]"/? over the discrete
time interval At and multiply by an independent standard Gaussian. To simulate
the extended MMAR, we first generate a discretized path from a FBM with pa-
rameter H taken from the estimates in Section 6.3. Interpolation provides values
of the path By [0 (¢)] at the simulated values from the path 6 (¢).
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